

Due for this week...

- Homework 2 (on MyMathLab via the Materials Link) → Monday night at 6pm.
- Read Chapter 6.6-6.7, 7.6-7.7, 10.5, 11.3-11.4
- Do the MyMathLab Self-Check for week 2.
- Learning team planning for week 5.
- Discuss your final week topic for your team presentations...

Common FactorsFactoring by Grouping

Common Factors

When factoring a polynomial, we first look for factors that are common to each term.

By applying a distributive property we can often write a polynomial as a product.

For example: $8x^2 = 2x \cdot 4x$ and $6x = 2x \cdot 3$

And by the distributive property, $8x^2 + 6x = 2x(4x + 3)$

EXAMPLE Finding common factors

Factor. $d.6x^2y^3 + x^2y^2$ $a.6x^2 + 7x$ b. $15x^3 - 5x^2$ C. $8w^3 - 2w^2 + 4w$ Solution a. $6x^2 + 7x$ $6x^2 = 6x \cdot x$ b. $15x^3 - 5x^2$ $15x^3 = 5 \cdot 3 \cdot x^2 \cdot x$ $7 x = 7 \cdot x$ $-5x^2 = -5 \cdot x^2$ x(6x+7) $5x^{2}(3x-1)$ C. $8w^3 - 2w^2 + 4w$ $d_{0}6x^{2}y^{3} + x^{2}y^{2}$

 $8w^{3} = 4 \cdot 2 \cdot w^{2} \cdot w$ $-2w^{2} = -2 \cdot w \cdot w$ $4w = 2 \cdot 2 \cdot w$ $= 2w(4w^{2} - w + 2)$ $6x^{2}y^{3} = 6x^{2}y^{2}$ $x^{2}y^{2} = x^{2}y^{2}$ $x^{2}y^{2}(6y + 1)$

When finding the greatest common factor for a polynomial, it is often helpful first to completely factor each term of the polynomial.

EXAMPLE Finding the greatest common factor

Find the greatest common factor for the expression. Then factor the expression. $18x^2 + 3x$

Solution $18x^2 = 2 \cdot 3 \cdot 3 \cdot x \cdot x$

 $3x = 3 \cdot x$

The greatest common factor is 3x.

 $18x^2 + 3x = 3x(6x + 1)$

Factoring by Grouping

Factoring by grouping is a technique that makes use of the associative and distributive properties.

EXAMPLE Factoring out binomials

Factor.

a. 3x(x+1) + 4(x+1) b. $3x^2(2x-1) - x(2x-1)$

Solution

a. Both terms in the expression contain the binomial x + 1. Use the distributive property to factor.

3x(x+1)+4(x+1)(3x+4)(x+1) b. 3x²(2x-1)-x(2x-1) 3x²(2x-1)-x(2x-1) (3x²-x)(2x-1) x(3x-1)(2x-1)

EXAMPLE Factoring by grouping when the middle term is (+)

Factor the polynomial. $x^3 - 4x^2 + 3x - 12$

Solution $x^{3}-4x^{2}+3x-12 = (x^{3}-4x^{2})+(3x-12)$ $= (x^{3}-4x^{2})+(3x-12)$ $= x^{2}(x-4)+3(x-4)$ $= (x^{2}+3)(x-4)$

EXAMPLE Factoring by grouping when the middle term is (–)

Factor the polynomial. $15x^3 - 10x^2 - 3x + 2$

Solution

$$15x^{3} - 10x^{2} - 3x + 2 = (15x^{3} - 10x^{2}) + (-3x + 2)$$
$$= 5x^{2}(3x - 2) - 1(3x - 2)$$
$$= (5x^{2} - 1)(3x - 2)$$

EXAMPLE Factoring out the GCF before grouping

Completely factor the polynomial. $30x^3 - 20x^2 - 6x + 4$

Solution

$$30x^{3} - 20x^{2} - 6x + 4 = 2(15x^{3} - 10x^{2} - 3x + 2)$$
$$= 2[(15x^{3} - 10x^{2}) + (-3x + 2)]$$
$$= 2[5x^{2}(3x - 2) - 1(3x - 2)]$$
$$= 2(5x^{2} - 1)(3x - 2)$$

Practice for section 6.1

- Finding common factors questions 13-20
- Finding the greatest common factor Q 21-38
- Factoring out binomials Q 39-44
- Factoring by grouping when the middle term is (+)
 Q 45-48
- Factoring by grouping when the middle term is (-)
 Q 53-59
- Factoring out the GCF before grouping Q 65-70

Review of the FOIL Method

Factoring Trinomials Having a Leading Coefficient of 1

The product (x + 3) (x + 4) can be found as follows: $x^{2} + 4x + 3x + 12$ $x^{2} + 7x + 12$

The middle term is found by calculating the sum 4x and 3x, and the last term is found by calculating the product of 4 and 3.

FACTORING $x^2 + bx + c$

To factor the trinomial $x^2 + bx + c$, find numbers m and n that satisfy

 $m \cdot n = c$ and m + n = b.

Then $x^2 + bx + c = (x + m)(x + n)$.

EXAMPLE Factoring a trinomial having only positive coefficients

Factor each trinomial.

a. $x^2 + 11x + 18$

Solution

a. $x^2 + 11x + 18$

Factors of 18 whose sum is 11.

Factors	Sum
1, 18	19
2, 9	11
3, 6	9

(x+2)(x+9)

b.
$$x^2 + 10x + 24$$

b. $x^2 + 10x + 24$

Factors of 24 whose sum is 10.

Factors	Sum
1, 24	25
2, 12	14
3, 8	11
4, 6	10

(x+4)(x+6)

EXAMPLE Factoring a trinomial having a negative middle coefficient

Factor each trinomial.

a. $x^2 - 9x + 14$

b.
$$x^2 - 19x + 48$$

Solution

a.
$$x^2 - 9x + 14$$

Factors of 14 whose sum is −9.

Factors	Sum
-1, -14	-15
-2, -7	-9

$$(x-2)(x-7)$$

b.
$$x^2 - 19x + 48$$

Factors of 48 whose sum is -19.

Factors	Sum
-1, -48	-49
-2, -24	-26
-3, -16	-19
-4, -12	-16
-6, -8	-14

$$(x-3)(x-16)$$

EXAMPLE Factoring a trinomial having a negative constant term

Factor each trinomial. a. $x^2 + 2x - 15$

b.
$$x^2 - 6x - 16$$

Solution

a. $x^2 + 2x - 15$

Factors of -15 whose sum is 2.

Factors	Sum
1, -15	-14
- 1, 15	+14
3, -5	-2
-3, 5	2

(x-3)(x+5)

b.
$$x^2 - 6x - 16$$

Factors of -16 whose sum is -6.

Factors	Sum	
-1, 16	15	
1, -16	-15	
-2, 8	6	
2, -8	-6	
-4, 4	0	

$$(x+2)(x-8)$$

EXAMPLE Discovering that a trinomial is prime

Factor the trinomial.

$$x^2 + 6x - 8$$

Solution

Factors of -8 whose sum is 6.

Factors	Sum
1, -8	-7
-1, 8	7
2, -4	-2
-2, 4	2

The table reveals that no such factor pair exists. Therefore, the trinomial is prime.

EXAMPLE Factoring out the GCF before factoring further

Factor each trinomial completely. a. $4x^2 + 28x + 48$ b. $7x^2 + 21x - 70$

Solution

a.
$$4x^2 + 28x + 48$$

Factor out common factor of 4.

$$4(x^2 + 7x + 12)$$

Factors (12)	Sum (7)
1, 12	13
2, 6	8
3, 4	7

4(x+3)(x+4)

b. $7x^2 + 21x - 70$

Factor out common factor of 7.

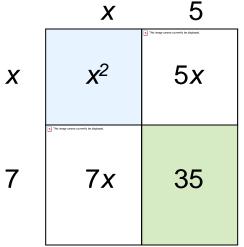
$$7(x^2 + 3x - 10)$$

Factors (-10)	Sum (3)
1, -10	-9
2, -5	-3
-2, 5	3

7(x-2)(x+5)

EXAMPLE Finding the dimensions of a rectangle

Find one possibility for the dimensions of a rectangle that has an area of $x^2 + 12x + 35$.



The area of a rectangle equals length times width. If we can factor $x^2 + 12x + 35$, then the factors can represents its length and width.

Because

 $x^{2} + 12x + 35 = (x + 5)(x + 7),$

Area =
$$x^2$$
 + 12x + 35

one possibility for the rectangle's dimensions is width x + 5 and length x + 7.

Practice for section 6.2

- Factoring a trinomial having only positive coefficients *Q* 15-26
- Factoring a trinomial having a negative middle coefficient Q 29-38
- Factoring a trinomial having a negative constant term Q 39-60
- Factoring out the GCF before factoring further
 Q 61-80
- Finding the dimensions of a rectangle Q 83

Factoring Trinomials by GroupingFactoring with FOIL in Reverse

Factoring Trinomials by Grouping

FACTORING $ax^2 + bx + c$ BY GROUPING

To factor $ax^2 + bx + c$ perform the following steps. (Assume that a, b, and c have no factor in common.)

- 1. Find numbers *m* and *n* such that mn = ac and m + n = b. (This step may require trial and error.)
- 2. Write the trinomial as $ax^2 + mx + nx + c$.
- 3. Use grouping to factor this expression as two binomials.

EXAMPLE Factoring $ax^2 + bx + c$ by grouping

Factor each trinomial. a. $2x^2 + 13x + 15$

b.
$$12y^2 - 5y - 3$$

Solution

a. $2x^2 + 13x + 15$

Multiply (2)(15) = 30Factors of 30 whose sum is 13 10 and 3

- $= 2x^{2} + 10x + 3x + 15$ $= (2x^{2} + 10x) + (3x + 15)$
- = 2x(x+5) + 3(x+5)

=(2x+3)(x+5)

b. $12y^2 - 5y - 3$

Multiply (12)(-3) = -36Factors of -36 whose sum is -5-9 and 4

$$=12y^{2}-9y+4y-3$$

= (12y²-9y)+(4y-3)
= 3y(4y-3)+1(4y-3)
= (3y+1)(4y-3)

EXAMPLE Discovering that a trinomial is prime

Factor the trinomial. $3x^2 + 9x + 4$

Solution

a. We need to find integers m and n such that mn = (3)(4) = 12 and m + n = 9. Because the middle term is positive, we consider only positive factors of 12.

Factors	1, 12	2, 6	3, 4
Sum	13	8	7

There are no factors whose sum is 9, the coefficient of the middle term. The trinomial is prime.

Factoring with FOIL in Reverse

$$3x^{2} + 7x + 2 \stackrel{?}{=} (\underline{\qquad} + \underline{\qquad})(\underline{\qquad} + \underline{\qquad})$$

$$3x^{2} + 7x + 2 \stackrel{?}{=} (\underline{\qquad} x + \underline{\qquad})(\underline{\qquad} + \underline{\qquad}).$$

$$(3x + 2)(x + 1) = 3x^{2} + 5x + 2$$

$$(3x + 2)(x + 1) = 3x^{2} + 5x + 2$$

$$(3x + 2)(x + 1) = 3x^{2} + 5x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} + 7x + 2$$

$$(3x + 1)(x + 2) = 3x^{2} +$$

EXAMPLE Factoring the form $ax^2 + bx + c$

Factor the trinomial. $2x^2 + 7x + 6$

Solution

$$2x^{2} + 7x + 6$$

$$2x^{2} + 7x + 6 = (2x + _)(x + _)$$

The factors of the last term are either 1 and 6 or 2 and 3. Try a set of factors. Try 1 and 6.

$$(2x+1)(x+6) = 2x^2 + 13x + 6$$

$\frac{x}{12x}$ Middle term is 13x not 7x. 13x

EXAMPLE Factoring the form $ax^2 + bx + c$ —continued

Factor the trinomial. $2x^2 + 7x + 6$ The factors of the last term are either 1 and 6 or 2 and 3. Try a set of factors. Solution Try 2 and 3 the factors of the last term.

$$(2x+2)(x+3) = 2x^2 + 8x + 6$$

2x

 $\frac{6x}{8x}$ Middle term is 8x not 7x.

Try another $(2x+3)(x+2) = 2x^2 + 7x + 6$ set of factors 3x3 and 2. 4x Middle term is correct.

MAKING CONNECTIONS

The Signs in the Binomial Factors

Let a, b, and c represent positive integers. If a trinomial of the form $ax^2 + bx + c$ can be factored, the signs in the binomial factors can be summarized as follows.

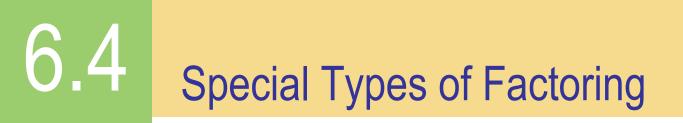
Form of the Trinomial

Signs in the Binomial Factors

$ax^2 + bx + c$	(+)(+)
$ax^2 - bx + c$	(_)(–)
$ax^2 + bx - c$	(_)(+)
$ax^2 - bx - c$	(_)(+)

Practice for section 6.3

- Factoring $ax^2 + bx + c$ by grouping Q11-34
- Discovering that a trinomial is prime Q 13-23
- Factoring the form $ax^2 + bx + c \mathbf{Q} \mathbf{29-50}$



Difference of Two Squares Perfect Square Trinomials Sum and Difference of Two Cubes

DIFFERENCE OF TWO SQUARES

For any real numbers *a* and *b*, $a^2 - b^2 = (a - b)(a + b).$

EXAMPLEFactoring the difference of two squaresFactor each difference of two squares.

a. $9x^2 - 16$ b. $5x^2 + 8y^2$ c. $25x^4 - y^6$

Solution

a.
$$9x^2 - 16 = (3x)^2 - (4)^2 = (3x - 4)(3x + 4)$$

- b. Because $5x^2 + 8y^2$ is the sum of two squares, it *cannot* be factored.
- c. If we let $a^2 = 25x^4$ and $b^2 = y^6$, then $a = 5x^2$ and $b = y^3$. Thus,

$$25x^4 - y^6 = (5x^2)^2 - (y^3)^2$$
$$= (5x^2 - y^3) (5x^2 + y^3).$$

PERFECT SQUARE TRINOMIALS

For any real numbers a and b, $a^2 + 2ab + b^2 = (a + b)^2$ and $a^2 - 2ab + b^2 = (a - b)^2$.

EXAMPLE Factoring perfect square trinomials

If possible, factor each trinomial as a perfect square.

a. $x^2 + 8x + 16$ b. $4x^2 - 12x + 9$

Solution

a. $x^2 + 8x + 16$ Let $a^2 = x^2$ and $b^2 = 4^2$. For a perfect square trinomial, the middle term must be 2*ab*.

2ab = 2(x)(4) = 8x,

which equals the given middle term. Thus $a^2 + 2ab + b^2 = (a + b)^2$ implies

$$x^2 + 8x + 16 = (x + 4)^2$$
.

EXAMPLE continued

b. $4x^2 - 12x + 9$

Let $a^2 = (2x)^2$ and $b^2 = 3^2$. For a perfect square trinomial, the middle term must be 2*ab*.

2ab = 2(2x)(3) = 12x,

which equals the given middle term. Thus $a^2 - 2ab + b^2 = (a - b)^2$ implies

$$4x^2 - 12x + 9 = (2x - 3)^2.$$

SUM AND DIFFERENCE OF TWO CUBES

For any real numbers a and b, $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ and $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

EXAMPLE Factoring the sum and difference of two cubes

Factor each polynomial.

- a. $n^3 + 27$ b. $8x^3 125y^3$ Solution
- a. *n*³ + 27

Because $n^3 = (n)^3$ and $27 = 3^3$, we let a = n, b = 3, and factor.

Substituting $a^3 + b^3 = (a + b)(a^2 - ab + b^2)$ gives $n^3 + 3^3 = (n + 3)(n^2 - n \cdot 3 + 3^2)$ $= (n + 3)(n^2 - 3n + 9).$

EXAMPLE continued

b. $8x^3 - 125y^3$

Here,
$$8x^3 = (2x)^3$$
 and $125y^3 = (5y)^3$, so
 $8x^3 - 125y^3 = (2x)^3 - (5y)^3$.

Substituting
$$a = 2x$$
 and $b = 5y$ in
 $a^3 - b^3 = (a - b)(a^2 + ab + b^2)$

gives

$$(2x)^3 - (5y)^3 = (2x - 5y)(4x^2 + 10xy + 25y^2).$$

EXAMPLE Factoring out the GCF before factoring further

Factor the polynomial completely. $8s^3 - 32st^2$

Solution

Factor out the common factor of 8s.

$$8s^{3} - 32st^{2} = 8s(s^{2} - 4t^{2})$$
$$= 8s(s - 2t)(s + 2t)$$

Practice for section 6.4

- Factoring the difference of two squares Q 15-30
- Factoring perfect square trinomials Q 31-52
- Factoring the sum and difference of two cubes
 Q53-66
- Factoring out the GCF before factoring further
 Q 67-84

Basic Concepts Simplifying Rational Expressions Applications

Basic Concepts

Rational expressions can be written as quotients (fractions) of two polynomials. Examples include:

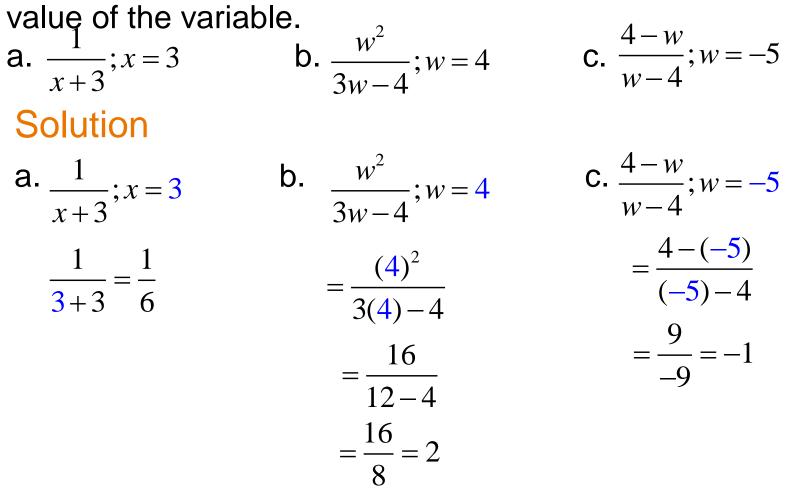
$$\frac{5}{x}$$
, $\frac{x^2}{3x-4}$, $\frac{4x^2+6x-1}{4x^3-8}$

RATIONAL EXPRESSION

A rational expression can be written as $\frac{P}{Q}$, where P and Q are polynomials. A rational expression is defined whenever $Q \neq 0$.

EXAMPLE Evaluating rational expressions

If possible, evaluate each expression for the given value of the variable.



EXAMPLE Determining when a rational expression is undefined

Find all values of the variable for which each expression is undefined. w^2 6

a.
$$\frac{1}{x^2}$$

Solution
a. $\frac{1}{x^2}$
b. $\frac{w^2}{w-4}$
c. $\frac{w^2}{w^2-4}$
c. $\frac{6}{w^2-4}$
l. $\frac{6}{w^2-4}$

Undefined when $x^2 = 0$ or when x = 0.

Undefined when w - 4 = 0 or when w = 4.

Undefined when $w^2 - 4 = 0$ or when $w = \pm 2$.

EXAMPLE Simplifying fractions

Simplify each fraction by applying the basic principle of fractions.

a.
$$\frac{9}{15}$$
 b. $\frac{20}{28}$ c. $\frac{45}{135}$
Solution

a. The GCF of 9 and 15 is 3. $\frac{9}{15} = \frac{3 \cdot 3}{3 \cdot 5} = \frac{3}{5}$

b. The GCF of 20 and 28 is 4.
$$\frac{20}{28} = \frac{4 \cdot 5}{4 \cdot 7} = \frac{5}{7}$$

c.The GCF of 45 and 135 is 45.
$$\frac{45}{135} = \frac{45 \cdot 1}{45 \cdot 3} = \frac{1}{3}$$

BASIC PRINCIPLE OF RATIONAL EXPRESSIONS

The following property can be used to simplify rational expressions, where P, Q, and R are polynomials.

$$\frac{P \cdot R}{Q \cdot R} = \frac{P}{Q} \qquad Q \text{ and } R \text{ are nonzero.}$$

EXAMPLE Simplifying rational expressions

Simplify each e a. $\frac{16y}{4y^2}$	expression. b. $\frac{3x+12}{4x+16}$	c. $\frac{x^2 - 25}{2x^2 - 7x - 15}$
Solution		
a. $\frac{16y}{4y^2}$	b. $\frac{3x+12}{4x+16}$	c. $\frac{x^2 - 25}{2x^2 - 7x - 15}$
$=\frac{4y\cdot 4}{4y\cdot y}$	$=\frac{3(x+4)}{4(x+4)}$	$=\frac{(x-5)(x+5)}{(2x+3)(x-5)}$
$=\frac{4}{y}$	$=\frac{3}{4}$	$=\frac{x+5}{2x+3}$

EXAMPLE Distributing a negative sign

Simplify each expression. a. $\frac{-y-7}{2y+14}$	b	$\frac{8-x}{x-8}$
Solution a. $\frac{-y-7}{2y+14}$	b.	$\frac{8-x}{x-8}$
$=\frac{-1(y+7)}{2(y+7)}$		$=\frac{-(8-x)}{x-8}$
$=-\frac{1}{2}$		$=\frac{-8+x}{x-8}$ $=\frac{x-8}{x-8}=1$

Practice for section 7.1

- Evaluating rational expressions **Q** 11-24
- Determining when a rational expression is undefined
 Q 29-42
- Simplifying fractions Q 43-50
- Simplifying rational expressions Q 55-66,71-84
- Distributing a negative sign Q 67-70

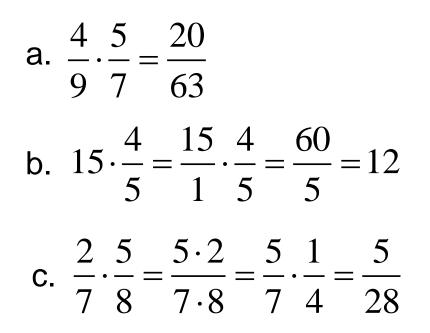
Review of Multiplication and Division of Fractions
Multiplication of Rational Expressions
Division of Rational Expressions

EXAMPLE Multiplying fractions

Multiply and simplify your answers to lowest terms.

a.
$$\frac{4}{9} \cdot \frac{5}{7}$$
 b. $15 \cdot \frac{4}{5}$ c. $\frac{2}{7} \cdot \frac{5}{8}$

Solution



EXAMPLE Dividing fractions

Divide and simplify your answers to lowest terms.

a.
$$\frac{1}{6} \div \frac{3}{5}$$
 b. $\frac{6}{7} \div 18$ c. $\frac{4}{5} \div \frac{11}{15}$

Solution

a.
$$\frac{1}{6} \div \frac{3}{5} = \frac{1}{6} \cdot \frac{5}{3} = \frac{5}{18}$$

b. $\frac{6}{7} \div 18 = \frac{6}{7} \cdot \frac{1}{18} = \frac{1 \cdot 6}{7 \cdot 18} = \frac{1}{21}$
c. $\frac{4}{5} \div \frac{11}{15} = \frac{4}{5} \cdot \frac{15}{11} = \frac{60}{55} = \frac{12 \cdot 5}{11 \cdot 5} = \frac{12}{11}$

PRODUCTS OF RATIONAL EXPRESSIONS

To multiply two rational expressions multiply the numerators and multiply the denominators. That is,

$$\frac{A}{B} \cdot \frac{C}{D} = \frac{AC}{BD},$$

where *B* and *D* are nonzero.

EXAMPLE Multiplying rational expressions

Multiply and simplify to lowest terms. Leave your answers in factored form.

a.
$$\frac{6x}{10} \cdot \frac{5}{12x^2}$$

Solution
a. $\frac{6x}{10} \cdot \frac{5}{12x^2} = \frac{6x}{10} \cdot \frac{5}{12x^2}$
 $= \frac{30x}{120x^2}$
 $= \frac{1}{4x}$
b. $\frac{x-3}{2x-1} \cdot \frac{x+4}{3x-9}$
b. $\frac{x-3}{2x-1} \cdot \frac{x+4}{3x-9}$
 $= \frac{(x-3)(x)}{(2x-1)(x-1)(x+4)}$

$$\frac{x-3}{2x-1} \cdot \frac{x+4}{3x-9}$$

$$= \frac{(x-3)(x+4)}{(2x-1)(3x-9)}$$

$$= \frac{(x-3)(x+4)}{3(2x-1)(x-3)}$$

$$= \frac{x+4}{3(2x-1)}$$

EXAMPLE Multiplying rational expressions

Multiply and simplify to lowest terms. Leave your answer in factored form.

Solution	$\frac{x^2 - 16}{x^2 - 9} \cdot \frac{x + 3}{x - 4}$
$\frac{x^2 - 16}{x^2 - 9} \cdot \frac{x + 3}{x - 4}$	$=\frac{(x^2-16)(x+3)}{(x^2-9)(x-4)}$
	$= \frac{(x-4)(x+4)(x+3)}{(x-3)(x+3)(x-4)}$ $= \frac{(x+4)(x+3)(x-4)}{(x-3)(x+3)(x-4)}$
	$=\frac{(x+4)}{(x-3)}$

QUOTIENTS OF RATIONAL EXPRESSIONS

To divide two rational expressions multiply by the reciprocal of the divisor. That is,

$$\frac{A}{B} \div \frac{C}{D} = \frac{A}{B} \cdot \frac{D}{C},$$

where *B*, *C*, and *D* are nonzero.

EXAMPLE Dividing rational expressions

Divide and simplify to lowest terms. b. $\frac{x^2 - 16}{x^2 - 2x - 8} \div \frac{x + 4}{x + 2}$ a. $3 \cdot 2x + 1$ *x* 6*x* Solution a. $\frac{3}{2x+1}$ b. $\frac{x^2 - 16}{x^2 - 2x - 8} \div \frac{x + 4}{x + 2}$ x = 6x $=\frac{3}{6x}$ $=\frac{x^2-16}{x^2-2x-8}\cdot\frac{x+2}{x+4}$ $x \quad 2x+1$ $=\frac{18x}{x(2x+1)}$ $=\frac{(x+4)(x-4)}{(x+2)(x-4)}\cdot\frac{x+2}{x+4}$ $=\frac{18}{2x+1}$ $=\frac{(x+4)(x-4)(x+2)}{(x+2)(x-4)(x+4)} = 1$

Practice for section 7.2

- Multiplying fractions Q 9-14
- Dividing fractions Q 17-22
- Multiplying rational expressions Q 33-49
- Dividing rational expressions Q 53-70

Review of Addition and Subtraction of Fractions
 Rational Expressions Having Like
 Denominators

EXAMPLE Adding fractions having like denominators

Add and simplify to lowest terms.

a.
$$\frac{4}{7} + \frac{1}{7}$$
 b. $\frac{1}{9} + \frac{5}{9}$

Solution

a.
$$\frac{4}{7} + \frac{1}{7} = \frac{4+1}{7} = \frac{5}{7}$$

b. $\frac{1}{9} + \frac{5}{9} = \frac{1+5}{9} = \frac{6}{9} = \frac{2}{3}$

EXAMPLE Subtracting fractions having like denominators

Subtract and simplify to lowest terms.

a.
$$\frac{13}{18} - \frac{7}{18}$$
 b. $\frac{15}{30} - \frac{11}{30}$

Solution

- a. $\frac{13}{18} \frac{7}{18} = \frac{13 7}{18} = \frac{6}{18} = \frac{1}{3}$ b. 15, 11, 15-11, 4, 7
 - b. $\frac{15}{30} \frac{11}{30} = \frac{15 11}{30} = \frac{4}{30} = \frac{2}{15}$

SUMS OF RATIONAL EXPRESSIONS

To add two rational expressions having like denominators, add their numerators. Keep the same denominator.

$$\frac{A}{C} + \frac{B}{C} = \frac{A+B}{C}$$

EXAMPLE Adding rational expressions having like denominators

Add and simplify.

a.
$$\frac{4x+1}{x+3} + \frac{x-2}{x+3}$$
 b. $\frac{x}{x^2+7x+10} + \frac{5}{x^2+7x+10}$

Solution

a.
$$\frac{4x+1}{x+3} + \frac{x-2}{x+3} = \frac{4x+1+x-2}{x+3} = \frac{5x-1}{x+3}$$

b.
$$\frac{x}{x^2 + 7x + 10} + \frac{5}{x^2 + 7x + 10} = \frac{x + 5}{x^2 + 7x + 10}$$
$$= \frac{x + 5}{(x + 5)(x + 2)} = \frac{1}{x + 2}$$

EXAMPLE Adding rational expressions having two variables

Add and simplify to lowest terms.

a.
$$\frac{7}{ab} + \frac{4}{ab}$$

b.
$$\frac{w}{w^2 - y^2} + \frac{y}{w^2 - y^2}$$

Solution
a.
$$\frac{7}{ab} + \frac{4}{ab} = \frac{7+4}{ab} = \frac{11}{ab}$$

b.
$$\frac{w}{w^2 - y^2} + \frac{y}{w^2 - y^2} = \frac{w + y}{w^2 - y^2} = \frac{w + y}{(w - y)(w + y)} = \frac{1}{w - y}$$

DIFFERENCES OF RATIONAL EXPRESSIONS

To subtract two rational expressions having like denominators, subtract their numerators. Keep the same denominator.

$$\frac{A}{C} - \frac{B}{C} = \frac{A - B}{C}$$
 C is nonzero

EXAMPLE Subtracting rational expressions having like denominators

Subtract and simplify to lowest terms.

a.
$$\frac{6}{x^2} - \frac{x+6}{x^2}$$
 b. $\frac{2x-3}{x^2-1} - \frac{x-4}{x^2-1}$
Solution

a.
$$\frac{6}{x^2} - \frac{x+6}{x^2} = \frac{6-(x+6)}{x^2} = \frac{6-x-6}{x^2} = \frac{-x}{x^2} = -\frac{1}{x}$$

b.
$$\frac{2x-3}{x^2-1} - \frac{x-4}{x^2-1} = \frac{2x-3-x+4}{x^2-1} = \frac{x+1}{x^2-1}$$

 $=\frac{x+1}{(x+1)(x-1)} = \frac{1}{x-1}$

EXAMPLE Subtracting rational expressions having like denominators

Subtract and simplify to lowest terms.

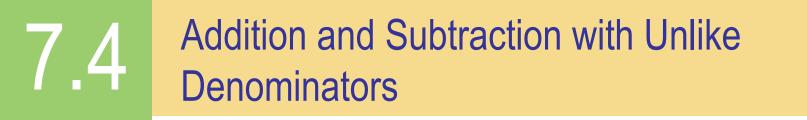
$$\frac{7a}{a+2} - \frac{a-2}{a+2}$$

Solution

$$\frac{7a}{a+2} - \frac{a-2}{a+2} = \frac{7a - (a-2)}{a+2} = \frac{6a+2}{a+2}$$

Practice for section 7.3

- Adding fractions having like denominators Q 15-20
- Subtracting fractions having like denominators
 Q 27-34
- Adding rational expressions having like denominators Q 25, 39, 41
- Adding rational expressions having two variables
 Q 57-62
- Subtracting rational expressions having like denominators Q 37, 63



Finding Least Common Multiples

Review of Fractions Having Unlike Denominators

Rational Expressions Having Unlike Denominators

FINDING THE LEAST COMMON MULTIPLE

The least common multiple (LCM) of two or more polynomials can be found as follows.

Step 1: Factor each polynomial completely.
Step 2: List each factor the greatest number of times that it occurs in either factorization.
Step 3: Find the product of this list of factors. The result is the LCM.

EXAMPLE Finding least common multiples

Find the least common multiple of each pair of expressions.

a. 6x, $9x^4$ b. $x^2 + 7x + 12$, $x^2 + 8x + 16$ Solution

a. Step 1: Factor each polynomial completely. $6x = 3 \cdot 2 \cdot x$ $9x^4 = 3 \cdot 3 \cdot x \cdot x \cdot x \cdot x$ Step 2: List each factor the greatest number of times. $3 \cdot 3 \cdot 2 \cdot x \cdot x \cdot x \cdot x$ Step 3: The LCM is $18x^4$.

EXAMPLE continued

Find the least common multiple.

b. $x^{2} + 7x + 12$, $x^{2} + 8x + 16$ Step 1: Factor each polynomial completely. $x^{2} + 7x + 12 = (x + 3)(x + 4)$ $x^{2} + 8x + 16 = (x + 4)(x + 4)$

Step 2: List each factor the greatest number of times. (x + 3), (x + 4), and (x + 4)

Step 3: The LCM is $(x + 3)(x + 4)^2$.

EXAMPLEAdding and subtracting fractions having
unlike denominatorsSimplify each expression.a. $\frac{4}{7} + \frac{1}{6}$ b. $\frac{5}{12} - \frac{11}{30}$

Solution

a. The LCD is the LCM, 42.

$$\frac{4}{7} + \frac{1}{6} = \frac{4}{7} \cdot \frac{6}{6} + \frac{1}{6} \cdot \frac{7}{7} = \frac{24}{42} + \frac{7}{42} = \frac{31}{42}$$

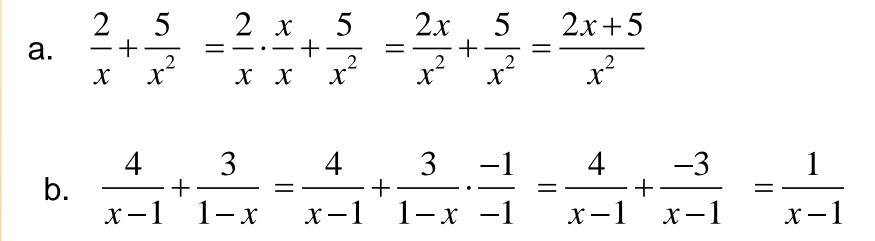
b. The LCD is 60. $\frac{5}{12} - \frac{11}{30} = \frac{5}{12} \cdot \frac{5}{5} - \frac{11}{30} \cdot \frac{2}{2} = \frac{25}{60} - \frac{22}{60} = \frac{3}{60} = \frac{1}{20}$

EXAMPLE Adding rational expressions having unlike denominators

Find each sum and leave your answer in factored form.

a.
$$\frac{2}{x} + \frac{5}{x^2}$$
 b. $\frac{4}{x-1} + \frac{3}{1-x}$

Solution



EXAMPLE Subtracting rational expressions having unlike denominators

Simply each expression. Write your answer in lowest terms and leave it in factored form. x-3 5

Solution x = x+7

The LCD is x(x + 7).

$$\frac{x-3}{x} - \frac{5}{x+7} = \frac{x-3}{x} \cdot \frac{x+7}{x+7} - \frac{5}{x+7} \cdot \frac{x}{x} = \frac{(x-3)(x+7)}{x(x+7)} - \frac{5x}{x(x+7)}$$

$$=\frac{(x-3)(x+7)-5x}{x(x+7)} = \frac{x^2+4x-21-5x}{x(x+7)} = \frac{x^2-x-21}{x(x+7)}$$

EXAMPLE Subtracting rational expressions with unlike denominators

Simplify each expression. Write your answer in lowest terms and leave it in factored form.

$$\frac{6}{x^2 + 6x + 9} - \frac{5}{x^2 - 9} = \frac{6}{(x + 3)(x + 3)} - \frac{5}{(x + 3)(x - 3)}$$

The LCD is $(x + 3)(x + 3)(x - 3)$.

$$= \frac{6}{(x + 3)(x + 3)} \cdot \frac{(x - 3)}{(x - 3)} - \frac{5}{(x + 3)(x - 3)} \cdot \frac{(x + 3)}{(x + 3)}$$

$$= \frac{6(x - 3)}{(x + 3)(x + 3)(x - 3)} - \frac{5(x + 3)}{(x + 3)(x + 3)(x - 3)}$$

$$= \frac{6x - 18 - 5x - 15}{(x + 3)(x + 3)(x - 3)} = \frac{x - 33}{(x + 3)(x + 3)(x - 3)}$$

EXAMPLE Modeling electrical resistance

Add $\frac{1}{R} + \frac{1}{S}$, and then find the reciprocal of the result.

Solution

The LCD is RS.

$$\frac{1}{R} + \frac{1}{S} = \frac{1}{R} \cdot \frac{S}{S} + \frac{1}{S} \cdot \frac{R}{R}$$
$$= \frac{S}{RS} + \frac{R}{RS}$$
The reciprocal is
$$= \frac{S+R}{RS} \qquad \frac{RS}{S+R}.$$

Practice for section 7.4

- Finding least common multiples **Q** 15-38
- Adding and subtracting fractions having unlike denominators Q 51-58
- Adding rational expressions having unlike denominators Q 59-77
- Subtracting rational expressions having unlike denominators Q 69-87
- Modeling electrical resistance Q 103



Radical Notation

Rational Exponents

Properties of Rational Exponents

SQUARE ROOT

The number b is a square root of a if $b^2 = a$.

Every positive number *a* has two square roots, one positive and one negative. Recall that the *positive* square root is called the *principal square root*.

The symbol $\sqrt{}$ is called the **radical sign**.

The expression under the radical sign is called the **radicand**, and an expression containing a radical sign is called a **radical expression**.

Examples of radical expressions:

$$\sqrt{7}$$
, $6 + \sqrt{x+2}$, and $\sqrt{\frac{5x}{3x-4}}$

EXAMPLE Finding principal square roots

Evaluate each square root.

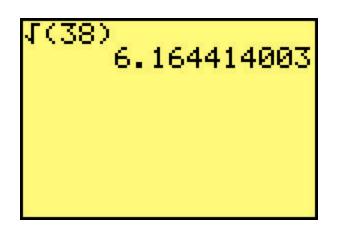
a. $\sqrt{36} = 6$

b.
$$\sqrt{0.64} = 0.8$$

c.
$$\sqrt{\frac{16}{25}} = \frac{4}{5}$$

EXAMPLE Approximating a square root

Approximate $\sqrt{38}$ to the nearest thousandth.



= 6.164

CUBE ROOT

The number b is a cube root of a if $b^3 = a$.

THE NOTATION $\sqrt[n]{a}$

The equation $\sqrt[n]{a} = b$ means that $b^n = a$, where *n* is a natural number called the **index**. If *n* is odd, we are finding an **odd root** and if *n* is even, we are finding an **even root**.

- 1. If a > 0, then $\sqrt[n]{a}$ is a positive number.
- **2.** If a < 0 and

a. *n* is odd, then $\sqrt[n]{a}$ is a negative number. **b.** *n* is even, then $\sqrt[n]{a}$ is *not* a real number.

EXAMPLE Finding nth roots

Find each root, if possible.

a.
$$\sqrt[4]{256}$$
 b. $\sqrt[5]{-243}$ c. $\sqrt[4]{-1296}$
Solution
a. $\sqrt[4]{256}$ = 4 because $4 \cdot 4 \cdot 4 \cdot 4 = 256$.
b. $\sqrt[5]{-243}$ = -3 because $(-3)^5 = -243$.

c. $\sqrt[4]{-1296}$ An *even* root of a *negative* number is *not* a real number.

THE EXPRESSION $\sqrt{x^2}$

For every real number x, $\sqrt{x^2} = |x|$.

EXAMPLE Simplifying expressions

Write each expression in terms of an absolute value.

a.
$$\sqrt{(-5)^2}$$
 b. $\sqrt{(x+3)^2}$ c. $\sqrt{w^2 - 6w + 9}$
Solution
a. $\sqrt{(-5)^2} = |-5| = 5$
b. $\sqrt{(x+3)^2} = |x+3|$
c. $\sqrt{w^2 - 6w + 9} = \sqrt{(w-3)^2} = |w-3|$

THE EXPRESSION $a^{1/n}$

If *n* is an integer greater than 1 and *a* is a real number, then

$$a^{1/n} = \sqrt[n]{a}$$

NOTE: If a < 0 and *n* is an even positive integer, then $a^{1/n}$ is not a real number.

EXAMPLE Interpreting rational exponents

Write each expression in radical notation. Then evaluate the expression and round to the nearest hundredth when appropriate.

a.
$$49^{1/2}$$
 b. $26^{1/5}$ c. $(6x)^{1/2}$
Solution
a. $49^{1/2} = \sqrt{49} = 7$ b. $26^{1/5}$

C.
$$(6x)^{1/2} = \sqrt{6x}$$

. . .

THE EXPRESSION $a^{m/n}$

If *m* and *n* are positive integers with $\frac{m}{n}$ in lowest terms, then

$$a^{m/n} = \sqrt[n]{a^m} = (\sqrt[n]{a})^m.$$

NOTE: If a < 0 and *n* is an even integer, then $a^{m/n}$ is *not* a real number.

Write each expression in radical notation. Evaluate the expression by hand when possible.

Interpreting rational exponents

Solution

EXAMPLE

a. $81^{3/4}$ Take the fourth root of 81 and then cube it.

$$=(81)^{3/4}$$

$$=\left(\sqrt[4]{81}\right)^3$$

 $=3^{3}$

= 27

b. $14^{4/5}$ Take the fifth root of 14 and then fourth it.

$$= 14^{4/5}$$
$$= \left(\sqrt[5]{14}\right)^4$$

Cannot be evaluated by hand.

TECHNOLOGY NOTE: Rational Exponents

When evaluating expressions with rational (fractional) exponents, be sure to put parentheses around the fraction. For example, most calculators will evaluate $8^{(2/3)}$ and $8^{2/3}$ differently. The accompanying figure shows evaluation of $8^{2/3}$ input correctly, $8^{(2/3)}$, as 4 but shows evaluation of $8^{2/3}$ input incorrectly, $8^{2/3}$, as $\frac{8^2}{3} = 21.\overline{3}$.

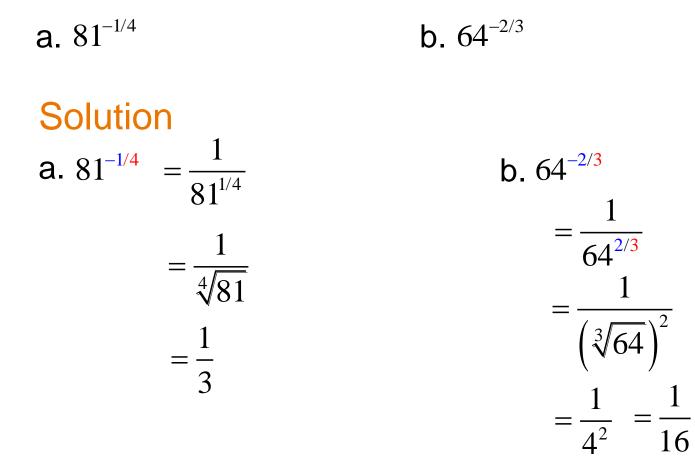
$Correct \rightarrow$	8^(2/3)
Incorrect \rightarrow	8^2/3 21.333333333

THE EXPRESSION $a^{-m/n}$

If *m* and *n* are positive integers with $\frac{m}{n}$ in lowest terms, then

$$a^{-m/n} = \frac{1}{a^{m/n}}, \qquad a \neq 0.$$

EXAMPLE Interpreting negative rational exponents Write each expression in radical notation and then evaluate.



PROPERTIES OF EXPONENTS

Let p and q be rational numbers written in lowest terms. For all real numbers a and bfor which the expressions are real numbers the following properties hold.

- 1. $a^{p} \cdot a^{q} = a^{p+q}$ Product rule for exponents
- 2. $a^{-p} = \frac{1}{a^p}, \quad \frac{1}{a^{-p}} = a^p$ Negative exponents
- 3. $\left(\frac{a}{b}\right)^{-p} = \left(\frac{b}{a}\right)^{p}$ Negative exponents for quotients
- 4. $\frac{a^p}{a^q} = a^{p-q}$ Quotient rule for exponents
- 5. $(a^p)^q = a^{pq}$ Power rule for exponents
- 7. $\left(\frac{a}{b}\right)^p = \frac{a^p}{b^p}$ Power rule for quotients
- 6. $(ab)^p = a^p b^p$ Power rule for products

EXAMPLE Applying properties of exponents

Write each expression using rational exponents and simplify. Write the answer with a positive exponent. Assume that all variables are positive numbers.

a.
$$\sqrt{x} \cdot \sqrt[4]{x}$$

Solution
a. $\sqrt{x} \cdot \sqrt[4]{x} = x^{1/2} \cdot x^{1/4}$
 $= x^{1/2+1/4}$
 $= x^{3/4}$
b. $\sqrt[4]{256x^3} = (256x^3)^{1/4}$
 $= 256^{1/4}(x^3)^{1/4}$

EXAMPLEApplying properties of exponents-continuedc.
$$\frac{\sqrt[5]{32x}}{\sqrt[4]{x}}$$
d. $\left(\frac{x^3}{27}\right)^{-1/3}$ Solution

a.
$$\frac{\sqrt[5]{32x}}{\sqrt[4]{x}} = \frac{(32x)^{1/5}}{x^{1/4}}$$

$$= \frac{32^{1/5}x^{1/5}}{x^{1/4}}$$

$$= 2x^{1/5-1/4}$$

$$= \frac{2}{x^{1/20}}$$

b. $\left(\frac{x^3}{27}\right)^{-1/3} = \left(\frac{27}{x^3}\right)^{1/3}$

$$= \frac{27^{1/3}}{(x^3)^{1/3}}$$

$$= \frac{3}{x}$$

EXAMPLE Applying properties of exponents

Write each expression with positive rational exponents and simplify, if possible. -1/4

a.
$$\sqrt[4]{\sqrt{x+2}}$$

Solution
a. $\sqrt[4]{\sqrt{x+2}} = ((x+2)^{1/2})^{1/4}$
 $= (x+2)^{1/8}$
b. $\frac{y^{-1/4}}{x^{-1/5}} = \frac{x^{1/5}}{y^{1/4}}$

Practice for section 10.1

- Finding principal square roots **Q** 11-18
- Approximating a square root Q 35-36
- Finding nth roots Q 29-34
- Simplifying expressions Q 103-110
- Interpreting rational exponents Q 41-56,63-68
- Interpreting negative rational exponents Q 57-62
- Applying properties of exponents Q 91-102

10.2 Simplifying Radical Expressions

Product Rule for Radical ExpressionsQuotient Rule for Radical Expressions

Consider the following example: $\sqrt{4} \cdot \sqrt{25} = 2 \cdot 5 = 10$ $\sqrt{4 \cdot 25} = \sqrt{100} = 10$

PRODUCT RULE FOR RADICAL EXPRESSIONS

Let *a* and *b* be real numbers, where $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are both defined. Then $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{a \cdot b}$.

Note: the product rule only works when the radicals have the *same index*.

EXAMPLE Multiplying radical expressions

Multiply each radical expression.

Solution

a.
$$\sqrt{36} \cdot \sqrt{4} = \sqrt{36 \cdot 4} = \sqrt{144} = 12$$

b.
$$\sqrt[3]{-8} \cdot \sqrt[3]{27} = \sqrt[3]{-8 \cdot 27} = \sqrt[3]{-216} = -6$$

C.
$$\sqrt[4]{\frac{1}{4}} \cdot \sqrt[4]{\frac{1}{16}} \cdot \sqrt[4]{\frac{1}{4}} = \sqrt[4]{\frac{1}{4}} \cdot \frac{1}{16} \cdot \frac{1}{4} = \sqrt[4]{\frac{1}{256}} = \frac{1}{4}$$

EXAMPLE Multiplying radical expressions containing variables

Multiply each radical expression. Assume all variables are positive.

Solution
a.
$$\sqrt{x^2} \cdot \sqrt{x^4} = \sqrt{x^2 \cdot x^4} = \sqrt{x^6} = x^3$$

b. $\sqrt[3]{5a} \cdot \sqrt[3]{10a^2} = \sqrt[3]{5a \cdot 10a^2} = \sqrt[3]{50a^3} = a\sqrt[3]{50}$

C.
$$\sqrt[4]{\frac{3x}{y}} \cdot \sqrt[4]{\frac{7y}{x}} = \sqrt[4]{\frac{3x}{y}} \cdot \frac{7y}{x} = \sqrt[4]{\frac{21xy}{xy}} = \sqrt[4]{21}$$

SIMPLIFYING RADICALS (*n*th ROOTS)

STEP 1: Determine the largest perfect *n*th power factor of the radicand.

STEP 2: Use the product rule to factor out and simplify this perfect *n*th power.

EXAMPLE Simplifying radical expressions

Simplify each expression.

a. $\sqrt{500}$ b. $\sqrt[3]{40}$ c. $\sqrt{72}$ Solution a. $\sqrt{500}$ = $\sqrt{100} \cdot \sqrt{5} = 10\sqrt{5}$ b. $\sqrt[3]{40}$ = $\sqrt[3]{8} \cdot \sqrt[3]{5} = 2\sqrt[3]{5}$ c. $\sqrt{72} = \sqrt{36} \cdot \sqrt{2} = 6\sqrt{2}$

EXAMPLE Simplifying radical expressions

Simplify each expression. Assume that all variables are positive.

a. $\sqrt{49x^4}$ b. $\sqrt{75y^5}$ C. $\sqrt[3]{3a} \cdot \sqrt[3]{9a^2w}$ Solution a. $\sqrt{49x^4} = \sqrt{49} \cdot \sqrt{x^4} = 7x^2$ C. $\sqrt[3]{3a} \cdot \sqrt[3]{9a^2w} = \sqrt[3]{3a \cdot 9a^2w}$ $\mathbf{b}.\sqrt{75y^5} = \sqrt{\left(25y^4\right)}\cdot 3y$ $=\sqrt[3]{(27a^3)w}$ $=\sqrt{25y^4}\cdot\sqrt{3y}$ $=\sqrt[3]{(27a^3)}\cdot\sqrt[3]{w}$ $=5y^2\sqrt{3y}$ $=3a\sqrt[3]{w}$

EXAMPLE Multiplying radicals with different indexes

Simplify each expression.

a.
$$\sqrt{7} \cdot \sqrt[3]{7}$$

b. $\sqrt[3]{a} \cdot \sqrt[5]{a}$
Solution
a. $\sqrt{7} \cdot \sqrt[3]{7} = 7^{1/2} \cdot 7^{1/3}$
 $= 7^{1/2 + 1/3}$
 $= 7^{5/6}$
b. $\sqrt[3]{a} \cdot \sqrt[5]{a} = a^{1/3} \cdot a^{1/5}$
 $= a^{1/3 + 1/5}$
 $= a^{8/15}$

Consider the following examples of dividing radical expressions: $\boxed{4}$ $\boxed{2 \ 2}$ 2

$$\sqrt{\frac{4}{9}} = \sqrt{\frac{2}{3} \cdot \frac{2}{3}} = \frac{2}{3}$$
$$\sqrt{\frac{4}{9}} = \frac{\sqrt{4}}{\sqrt{9}} = \frac{2}{3}$$

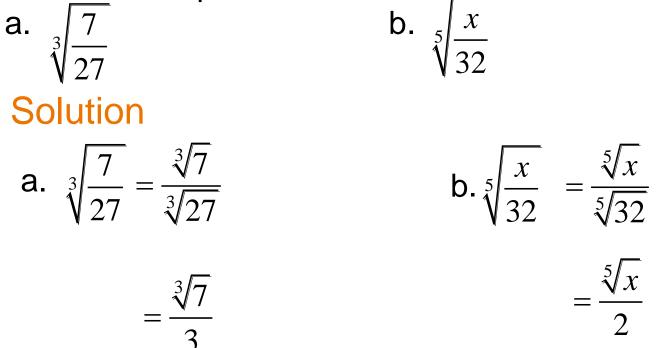
QUOTIENT RULE FOR RADICAL EXPRESSIONS

Let a and b be real numbers, where $\sqrt[n]{a}$ and $\sqrt[n]{b}$ are both defined and $b \neq 0$. Then

$$\sqrt[n]{\frac{a}{b}} = \frac{\sqrt[n]{a}}{\sqrt[n]{b}}$$

EXAMPLE Simplifying quotients

Simplify each radical expression. Assume that all variables are positive.



EXAMPLE Simplifying quotients

Simplify each radical expression. Assume that all variables are positive.

b. $\sqrt{x y}$ $\sqrt{90}$ a. **Solution** $\sqrt{90}$ a. b. $=\sqrt{9}$ =3

 $\frac{x^4y}{x^4}$

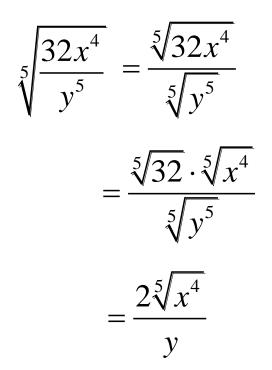
 $=\sqrt{x^2}$ $=x^2$

EXAMPLE Simplifying radical expressions

Simplify the radical expression. Assume that all

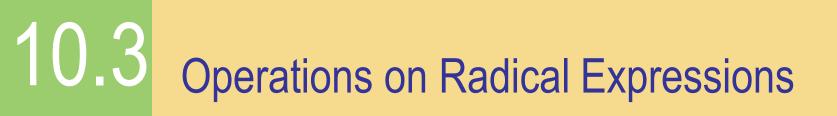
variables are positive.

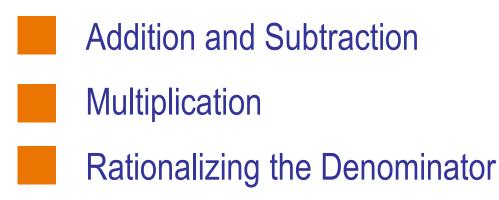
Solution



Practice for section 10.2

- Multiplying radical expressions Q 11-22
- Multiplying radical expressions containing variables Q 23-62 (not 33, 39,41)
- Simplifying radical expressions Q 75-80
- Multiplying radicals with different indexes
 Q 101-110
- Simplifying quotients Q 33,39,41
- Simplifying radical expressions Q 95-98





Like radicals have the same index and the same radicand.

Like

Unlike

 $3\sqrt{2} + 5\sqrt{2} \qquad \qquad 3\sqrt{2} + 5\sqrt{3}$

EXAMPLE Adding like radicals

If possible, add the expressions and simplify.

Solution a. $4\sqrt{7} + 8\sqrt{7} = 12\sqrt{7}$

 $b.7\sqrt[3]{5} + 2\sqrt[3]{5} = 9\sqrt[3]{5}$

c. $8 + \sqrt{13}$ The terms cannot be added because they are not like radicals.

d. $\sqrt{6} + \sqrt{16}$ The expression contains unlike radicals and *cannot* be added.

EXAMPLE Finding like radicals

Write each pair of terms as like radicals, if possible.

a.
$$\sqrt{80}, \sqrt{125}$$

b. $4\sqrt[3]{16}, 7\sqrt[3]{54}$
Solution
a. $\sqrt{80} = \sqrt{16 \cdot 5} = 4\sqrt{5}$
 $\sqrt{125} = \sqrt{25} \cdot \sqrt{5} = 5\sqrt{5}$
b. $4\sqrt[3]{16} = 4\sqrt[3]{8} \cdot \sqrt[3]{2}$
 $= 4 \cdot 2\sqrt[3]{2} = 8\sqrt[3]{2}$

$$7\sqrt[3]{54} = 7\sqrt[3]{27} \cdot \sqrt[3]{2}$$

$$=7\cdot 3\cdot \sqrt[3]{2}=21\sqrt[3]{2}$$

EXAMPLE Adding radical expressions

Add the expressions and simplify.

a. $\sqrt{20} + 5\sqrt{5}$ b. $5\sqrt{2} + \sqrt{50} + \sqrt{72}$

Solution a. $\sqrt{20} + 5\sqrt{5}$ $= \sqrt{4 \cdot 5} + 5\sqrt{5}$ $= 2\sqrt{5} + 5\sqrt{5}$ $= 7\sqrt{5}$

b. $5\sqrt{2} + \sqrt{50} + \sqrt{72}$ = $5\sqrt{2} + \sqrt{25 \cdot 2} + \sqrt{36 \cdot 2}$ = $5\sqrt{2} + 5\sqrt{2} + 6\sqrt{2}$ = $16\sqrt{2}$

EXAMPLE Subtracting like radicals

Simplify the expressions.

Solution a. $8\sqrt{7} - 2\sqrt{7} = 6\sqrt{7}$

b.
$$7\sqrt[3]{5} - 2\sqrt[3]{5} + \sqrt[3]{5} = (7 - 2 + 1)\sqrt[3]{5} = 6\sqrt[3]{5}$$

EXAMPLE Subtracting radical expressions

Subtract and simplify. Assume that all variables are positive.

a.
$$\sqrt{49x^5} - \sqrt{x^5}$$

Solution
a. $\sqrt{49x^5} - \sqrt{x^5}$
 $= \sqrt{49x^5} - \sqrt{x^5}$
 $= \sqrt{49x^4} \cdot \sqrt{x} - \sqrt{x^4} \cdot \sqrt{x}$
 $= 7x^2\sqrt{x} - x^2\sqrt{x}$
 $= 6x^2\sqrt{x}$
b. $\sqrt[3]{\frac{7y}{64}} - \frac{\sqrt[3]{7y}}{4}$
 $= \frac{\sqrt[3]{7y}}{4} - \frac{\sqrt[3]{7y}}{4}$
 $= 0$

EXAMPLE Subtracting radical expressions Subtract and simplify. Assume that all variables are positive. a. $7\sqrt{2}$ $3\sqrt{2}$ b. $\sqrt[3]{343a^7b^4} - 24\sqrt[3]{27ab}$

a.
$$\frac{7\sqrt{2}}{5} - \frac{3\sqrt{2}}{3}$$
 b.
Solution
a. $\frac{7\sqrt{2}}{5} - \frac{3\sqrt{2}}{3}$
 $= \frac{7\sqrt{2}}{5} - \frac{3\sqrt{2}}{3}$
 $= \frac{7\sqrt{2}}{5} \cdot \frac{3}{3} - \frac{3\sqrt{2}}{3} \cdot \frac{5}{5}$
 $= \frac{21\sqrt{2}}{15} - \frac{15\sqrt{2}}{15}$
 $= \frac{6\sqrt{2}}{15} = \frac{2\sqrt{2}}{5}$

D.
$$\sqrt[3]{343a^7b^4} - \sqrt[3]{27ab}$$

= $\sqrt[3]{343a^6b^3} \cdot \sqrt[3]{ab} - \sqrt[3]{27} \cdot \sqrt[3]{ab}$
= $7a^2b\sqrt[3]{ab} - 3\sqrt[3]{ab}$
= $(7a^2b - 3)\sqrt[3]{ab}$

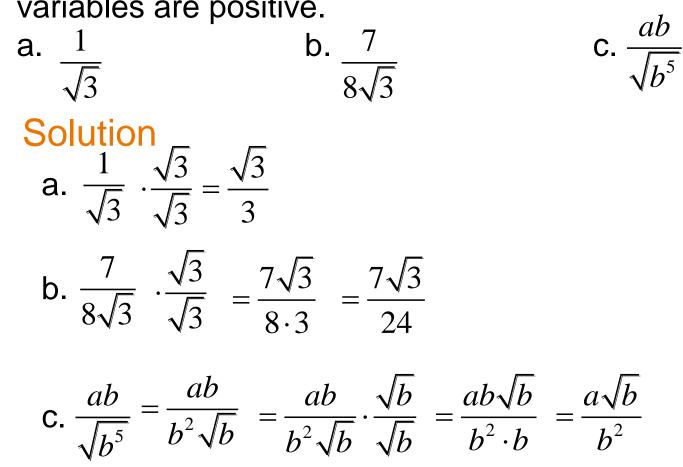
EXAMPLE Multiplying radical expressions

Multiply and simplify.

$$(3+\sqrt{x})(5-\sqrt{x})$$

$$(3+\sqrt{x})(5-\sqrt{x}) = 3\cdot 5 - 3\sqrt{x} + 5\sqrt{x} - \sqrt{x} \cdot \sqrt{x}$$
$$= 15 - 3\sqrt{x} + 5\sqrt{x} - \sqrt{x^{2}}$$
$$= 15 + 2\sqrt{x} - x$$

EXAMPLE Rationalizing the denominator Rationalize each denominator. Assume that all variables are positive.



Examples of conjugates.

TABLE 7.1

Expression	$1 + \sqrt{2}$	$\sqrt{3} - 2$	$\sqrt{x} + 7$	$\sqrt{a} - \sqrt{b}$
Conjugate	$1 - \sqrt{2}$	$\sqrt{3} + 2$	$\sqrt{x} - 7$	$\sqrt{a} + \sqrt{b}$

EXAMPLE Using a conjugate to rationalize the denominator

Rationalize the denominator of $\frac{1}{1+\sqrt{3}}$.

Solution $\frac{1}{1+\sqrt{3}} = \frac{1}{1+\sqrt{3}} \cdot \frac{1-\sqrt{3}}{1-\sqrt{3}}$ $=\frac{1}{-2}-\frac{\sqrt{3}}{-2}$ $=-\frac{1}{2}+\frac{\sqrt{3}}{2}$ $=\frac{1-\sqrt{3}}{1^2-(\sqrt{3})^2}$ $=\frac{1-\sqrt{3}}{1-3}$ $=\frac{1-\sqrt{3}}{2}$

EXAMPLE Rationalizing the denominator

Rationalize the denominator. $\frac{4+\sqrt{6}}{3-\sqrt{6}}$

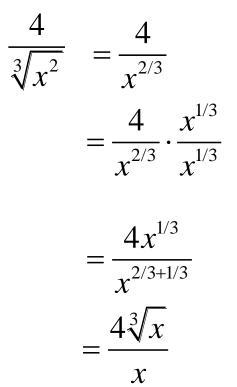
Solution $\frac{4+\sqrt{6}}{3-\sqrt{6}} = \frac{4+\sqrt{6}}{3-\sqrt{6}} \cdot \frac{3+\sqrt{6}}{3+\sqrt{6}}$ $=\frac{12+4\sqrt{6}+3\sqrt{6}+(\sqrt{6})^2}{9-(\sqrt{6})^2}$ $=\frac{18+7\sqrt{6}}{3}$ $=\frac{18}{2}+\frac{7\sqrt{6}}{2} = 6+\frac{7\sqrt{6}}{3}$

EXAMPLE Rationalizing the denominator having a cube root

Rationalize the denominator.

 $\frac{4}{\sqrt[3]{x^2}}$

Solution



Practice for section 10.3

- Adding like radicals Q 19-30
- Finding like radicals Q 9-18
- Adding radical expressions Q 29-49
- Subtracting like radicals Q 33-40
- Subtracting radical expressions Q 55-76
- Multiplying radical expressions Q 77-88
- Rationalizing the denominator Q 89-98
- Using a conjugate to rationalize the denominator Q 99-102
- Rationalizing the denominator **Q** 103-108
- Rationalizing the denominator having a cube root Q 113-116 Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Basic Concepts

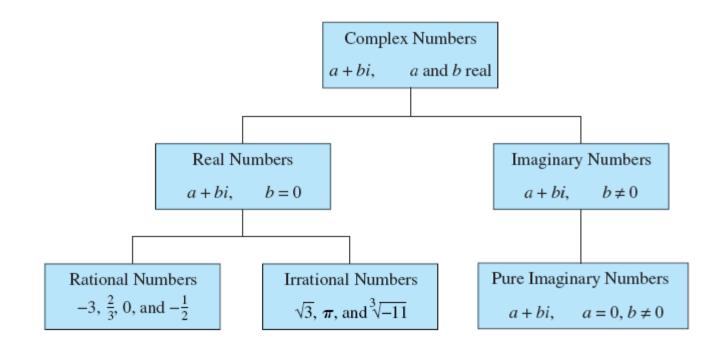
- Addition, Subtraction, and Multiplication
- Powers of *i*
- **Complex Conjugates and Division**

PROPERTIES OF THE IMAGINARY UNIT *i*

$$i = \sqrt{-1}$$
 and $i^2 = -1$

THE EXPRESSION $\sqrt{-a}$

If
$$a > 0$$
, then $\sqrt{-a} = i\sqrt{a}$.



EXAMPLE Writing the square root of a negative number

Write each square root using the imaginary *i*.

a.
$$\sqrt{-36}$$
 b. $\sqrt{-15}$ c. $\sqrt{-45}$

Solution

a.
$$\sqrt{-36} = i\sqrt{36} = 6i$$

b.
$$\sqrt{-15} = i\sqrt{15}$$

c.
$$\sqrt{-45} = i\sqrt{45} = i\sqrt{9}\sqrt{5} = 3i\sqrt{5}$$

SUM OR DIFFERENCE OF COMPLEX NUMBERS

Let a + bi and c + di be two complex numbers. Then

$$(a + bi) + (c + di) = (a + c) + (b + d)i$$
 Sum
and
 $(a + bi) - (c + di) = (a - c) + (b - d)i$. Difference

EXAMPLE Adding and subtracting complex numbers

Write each sum or difference in standard form.

- a. (-8 + 2i) + (5 + 6i) b. 9i (3 2i)Solution
- a. (-8 + 2i) + (5 + 6i) = (-8 + 5) + (2 + 6)i = -3 + 8i

b. 9i - (3 - 2i) = 9i - 3 + 2i = -3 + (9 + 2)i = -3 + 11i

EXAMPLE Multiplying complex numbers

Write each product in standard form.

a. (6 - 3i)(2 + 2i) b. (6 + 7i)(6 - 7i)Solution

a.
$$(6 - 3i)(2 + 2i)$$

= $(6)(2) + (6)(2i) - (2)(3i) - (3i)(2i)$
= $12 + 12i - 6i - 6i^2$
= $12 + 12i - 6i - 6(-1)$

= 18 + 6*i*

EXAMPLE continued

b.
$$(6 + 7i)(6 - 7i)$$

$$= (6)(6) - (6)(7i) + (6)(7i) - (7i)(7i)$$

$$= 36 - 42i + 42i - 49i^{2}$$

- $= 36 49i^{2}$
- = 36 49(-1)

= 85

POWERS OF *i*

The value of i^n can be found by dividing n (a positive integer) by 4. If the remainder is r, then

$$i^n = i^r$$
.

Note that
$$i^0 = 1$$
, $i^1 = i$, $i^2 = -1$, and $i^3 = -i$.

EXAMPLE Calculating powers of *i*

Evaluate each expression

a. *i*²⁵ b. *i*⁷ c. *i*⁴⁴

Solution

- a. When 25 is divided by 4, the result is 6 with the remainder of 1. Thus $i^{25} = i^1 = i$.
- b. When 7 is divided by 4, the result is 1 with the remainder of 3. Thus $i^7 = i^3 = -i$.
- c. When 44 is divided by 4, the result is 11 with the remainder of 0. Thus $i^{44} = i^0 = 1$.

EXAMPLE Dividing complex numbers

Write each quotient in standard form.

a.
$$\frac{3+2i}{5+i}$$
 b. $\frac{9}{3i}$

Solution

a.
$$\frac{3+2i}{5+i} = \frac{(3+2i)(5-i)}{(5+i)(5-i)} = \frac{3(5)-3(i)+(2i)(5)-(2i)(i)}{5(5)-5(i)+5(i)-(i)(i)}$$
$$= \frac{15-3i+10i-2i^2}{25-5i+5i-i^2} = \frac{15+7i-2(-1)}{25-(-1)}$$
$$= \frac{17+7i}{26} = \frac{17}{26} + \frac{7i}{26}$$

b.
$$\frac{9}{3i}$$
$$=\frac{9(-3i)}{(3i)(-3i)}$$
$$=\frac{-27i}{-9i^2}$$
$$=\frac{-27i}{-9(-1)}$$
$$=\frac{-27i}{-9(-1)}$$
$$=\frac{-27i}{9}$$
$$=-3i$$

Practice for section 10.6

- Writing the square root of a negative number
 Q 13-22
- Adding and subtracting complex numbers
 Q 23-30
- Multiplying complex numbers Q 31-36
- Calculating powers of *i* Q 49-56
- Dividing complex numbers Q 71-74

MTH 209 End of week 2

- You again have the answers to those problems not assigned
- Practice is SOOO important in this course.
- Work as much as you can with MyMathLab, the materials in the text, and on my Webpage.
- Do everything you can scrape time up for, first the hardest topics then the easiest.
- You are building a skill like typing, skiing, playing a game, solving puzzles.
- NEXT TIME: Nonlinear Equations quadratic equations, proportion and variation problems