Week 2 of MTH 209

Rockswold = Krieger

Beginning & /
| Intermediate 7 $




Due for thi s week6é

A Homework 2 (orMyMathLabi via the Materials
_ink) A Monday night at 6pm.

Read Chapter 6:6.7, 7.67.7,10.5,11.41.4
Do theMyMathLab Selt-Check for week 2.
_earning team planning for week 5.

Discuss your final week topic for your team
Dresentationsé

> > > D>
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Introduction to Factoring

B Common Factors

B Factoring by Grouping

PEARSON
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Common Factors

When factoring a polynomial, we first look for factors that are
common to each term.

By applying a distributive property we can often write a
polynomial as a product.

For example: & =2x Oix and & = 2x (B

And by the distributive property,
8x2 + 6X = 2x(4x + 3)
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EXAMPLE Finding common factors

Factor.
a.6x’+7x b. 15- 5¢ c. 8W- 2w HMw  d.BXY + XY

a. BX°+7x 6x°=6x K b. 15¢-5¢ 15 =5 B xOx

IX=7 © -5x* =5 x°0
X(6x+7) 5x?(3x - 1)
C. W’ - 2w 4w d.6X°Y’ + XV
8w’ =4 D wOw 6X2y3:6)(2y2
-2\/\/2 = 2—®V WC X2y2 :X2y2

=2W(4W - w ®)
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When finding the greatest common factor for a
polynomial, it is often helpful first to completely
factor each term of the polynomial.
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EXAMPLE Finding the greatest common factor

Find the greatest common factor for the expression.

Then factor the expression. 18x2 + 3x

18x2= 2 (B B x X
3x= 3
The greatest common factor is 3x.

18%x2 + 3x = 3x(6x + 1)
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Factoring by Grouping

Factoring by grouping is a technique that makes use of the
associative and distributive properties.
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EXAMPLE Factoring out binomials

Factor.
a. 3x(x+1)+4(x+1) b. 3x?(2x — 1) — x(2x — 1)

a. Both terms in the expression contain the binomial
X + 1. Use the distributive property to factor.

X(x+1) +4(x )
(3x+ h(x+1)

b. 3x°(2x- 1) -x(2x 1)
3X*(2x- 1) - x(2x 1)
(3x° - X)(2x- 1)

X(3x- D(2x- I
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EXAMPLE Factoring by grouping when the middle term is (+)

Factor the polynomial. x*- 4x* 8x 12

X°- 4x° Bx 12=(X 4x°) Bx 12)

=(x* 4x°) Bx 12)
= X°(x- 4) +3(x- 4)
= (x* +3)(x- 4)
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EXAMPLE Factoring by grouping when the middle term is (-)

Factor the polynomial. 15¢- 10x° -X 1

Solution

15¢- 10¢ -X 1=(15¢ -10¢) ¢ X 2
=5x*(3x- 2)- A(X- 2
= (5x° - 1)(3x- 2)
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EXAMPLE Factoring out the GCF before grouping

Completely factor the polynomial. 30x°- 20x° -6x #

30¢- 20¢ -6x * =2(15¢ -10¢ X A
=2[(15¢ -10¢) § 3x 2)
= 2[6x°(3x- 2)- 1(3x- 2)]

=2(5x" - 1)(3x- 2)
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Practice for section 6.1

~inding common factorgjuestions 1220

~inding the greatest common factQr21-38
—actoring out binomialg) 3944

—actoring by grouping when the middle term is (+)
Q 4548

« Factoring by grouping when the middle term-i$ (
Q 5359

« Factoring out the GCF befoggouping Q 6570

= T T T
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Factoring Trinomiafg® + bx+ c)

B Review of the FOIL Method

B Factoring Trinomials Having a Leading Coefficient

PEARSON

e —
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The productX + 3) (x + 4) can be found as follows:
X2+ 4X + 3X + 12
X2+ 7X+ 12
The middle term is found by calculating the suxn 4
and X, and the last term is found by calculating the
product of 4 and 3.

a " - ) e . ™~
To factor the trinomial x“ + bx + ¢, find numbers m and » that satisfy
m+n=c¢ and m + n = b.

Then x> + bx + ¢ = (x + m)(x + n).
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EXAMPLE Factoring a trinomial having only positive

coefficients
Factor each trinomial.
a. X*+11x 48 b. X°+10x 424
a. x*+11x 48 b.x*+10x 424
Factors of 18 whose Factors of 24 whose
sum is 11. sum is 10.
Factors Sum Factors Sum
1,18 19 1,24 25
2,9 1.1 2,12 14 (Xx+4)(x )
3,6 9 3,8 11

4,6 10
(X+2)(X 9)
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EXAMPLE Factoring a trinomial having a negative middle

coefficient
Factor each trinomial.

a. X°-9x 44

a. X°-9x 44

Factors of 14 whose
sumis - 9

Factors Sum

11,714 115
1217 19
(X- 2)(X -7)

h. x°-19x 8

b. X°-19x 48

Factors of 48 whose

sumis—-1.9

Factors Sum

11,1 481 49
1 2, 11246
1 3, 111169
14,112 1 16
16, mad&i4
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EXAMPLE Factoring a trinomial having a negative
constant term

Factor each trinomial.

. X°+2x -5 b, X -6x -16

a. X +2x -5 b. X*- 6x -16
Factors of =15 whose Factors of — 1 &hose
sum is 2. sumis — 6

Factors Sum Factors Sum

1,715 1 14 71,16 15
11,15 +14 1, 16715 (X+2)(X -8
3,15 T 2 T 2,
13,5 2 2, 186
T4
(x- 3)(x 5) .
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EXAMPLE Discovering that a trinomial is prime

Factor the trinomial.
X°+6xX -8

Factors Sum

X°+6x -8 1,18 17

Factors of — 8whose 11,38 7

sum is 6. 2174 i 2
T 2, 42

The table reveals that no such factor pair
exists. Therefore, the trinomial is prime.
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EXAMPLE Factoring out the GCF before factoring further

Factor each trinomial completely.

a. 4x° + 28x +AE

a. 4x° +28x +4¢€

Factor out common
factor of 4.

A(X°+7x H2)
Factors (12) Sum (7)

1,12 13
2,6 8
3,4 7

4(x+3)(x )

Copyright © 2009 Pearson

b. 7x*+21x -7C
b.7x°+21x -7C
Factor out common
factor of 7.
7(x*+3x -10)
Factors (- 10) Sum (3)
1,-10 -9
2,-5 -3
-2,5 3
7(x- 2)(x )
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EXAMPLE Finding the dimensions of a rectangle

Find one possibility for the dimensions of a rectangle
that has an area of x? + 12x + 35.

The area of a rectangle equals
X X 5X length times width. If we can factor
X? + 12x + 35, then the factors can
represents its length and width.

Because
X2+ 12x+35=(X+5)(x + 7),
Area=x2+12x+35 O0ne possibility foc

dimensions is width x + 5 and
length x + 7.
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Practice for section 6.2

« Factoring a trinomial having only positive
coefficientsQ 1526

« Factoring a trinomial having a negative middle
coefficientQ 2938

« Factoring a trinomial having a negative constant
termQ 3960

w Factoring out the GCF before factoring further
Q 61-80
« FInding the dimensions of a rectan@le33
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Factoring Trinomialstl € bx + ¢

B Factoring Trinomials by Grouping
B Factoring with FOIL in Reverse

PEARSON

—
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Factoring Trinomials by Grouping

To factor ax? + bx + ¢ perform the following steps. (Assume that a, b, and ¢ have no
factor in common.)

1. Find numbers m and » such that mn = ac and m + n = b. (This step may require
trial and error.)

2. Write the trinomial as ax® + mx + nx + c.

Use grouping to factor this expression as two binomials.

fd
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EXAMPLE Factoring ax? + bx + ¢ by grouping

Factor each trinomial.

a. 2x°+13x HE b. 12y°- 5y -3

a. 2x° +13x HE b. 12y°- 5y -Z

Multiply (2)(15) = 30 Multiply (12)(- 3) = - 36

Factors of 30 whose sum is 13 Factors of - 36 whose sum is - 5
10 and 3 - 9and 4

=2x° #0x+3x 15 =12y°- 9y #y- 3
=(2x 40x) @Bx 1% =(12y?- 9y) 4y 3

= 2X(x+5) +3(x+9) =3y(4y- 3 44y -3

= (2x+3)(x+9) =@y #)(4y- 3
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EXAMPLE Discovering that a trinomial is prime

Factor the trinomial. 3x*+9x

a. We need to find integers m and n such that
mn = (3)(4) =12 and m + n = 9. Because the middle
term Is positive, we consider only positive factors of 12.

Factors 1,12 2,6 3,4
Sum 13 8 4

There are no factors whose sum is 9, the
coefficient of the middle term. The trinomial is
prime.
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Factoring with FOIL in Reverse

3x2 4+ Tx 4+ 2 = ( + ) + )
WX+ Tx+22 (3¢ + )x + ).
(3x +2)(x + 1) = 3x* + 5x + 2

|k u |
+3x
Sx < Middle term is not 7
B+ (x +2) =3x* + Tx + 2
L ] |
+ 0O

-

«——— Middle term checks.
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EXAMPLE Factoring the form ax? + bx + ¢

Factor the trinomial. 2x*+7x 46

2X°+T7X 46
2 +7x 6 &2x _+ )k _+

The factors of the last term are either 1 and 6 or 2 and 3.

Try a set of factors. Try 1 and 6.
(2x+1)(x #6) 2¢ 1&x ¢
X
12x Middle term is 13x not 7x.

13X
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EXAMPLE Factoring the form ax? + bx + ¢d continued

Factor the trinomial. 2X°+7x 46

The factors of the last term are either 1 and 6 or 2 and 3.
Try a set of factors.

Try 2 and 3 the factors of the last term.
(2x+2)(x B8) 2¢ 8x €

2X

6x Middle term is 8x not 7x.

&
Try another (2x+3)(x #2) 2¢X 7% ¢
set of factors 3
3 and 2.

4X  Middle term is correct.

X
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MAKING CONNECTIONS

The Signs in the Binomial Factors

Let a, b, and ¢ represent positive integers. If a trinomial of the form ax?* + bx + ¢ can be
factored, the signs in the binomial factors can be summarized as follows.

Form of the Trinomial Signs in the Binomial Factors
ax® + bx + ¢ (+ ) +)
ax* — bx + ¢ ( — ) =)
ax® + bx — ¢ (— ) +)
ax® — by — ¢ ( — ) +)

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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Practice for section 6.3

« Factoringax? + bx + ¢ by grouping Q11-34
« Discovering that a trinomial Is print@ 1323
« Factoring the fornax? + bx+ ¢ Q 2950
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Special Types of Factoring

B Difference of Two Squares
B Perfect Square Trinomials

B Sum and Difference of Two Cubes

PEARSON

—
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DIFFERENCE OF TWO SQUARES

For any real numbeisandb,
a1 b>=(ai b)(a + b).
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EXAMPLE Factoring the difference of two squares

Factor each difference of two squares.

a. 9x2—-16 b. 5x?+ 8y~ C. 25x*—y°

a. Ix?—16 =(3x)2—(4)? =(3xT 4) (3x + 4)

b. Because 5x? + 8y? is the sum of two squares, it
cannot be factored.

c. Ifwe leta?=25x%and b= y® thena=5x?and b = y=.
Thus,

= (5x=y?) (5x* +y?).
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PERFECT SQUARE TRINOMIALS

For any real numbeisandb,
ac+ 2ab+ b?= (a + b)? and
a1 2ab+b?= (a1 b)2
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EXAMPLE Factoring perfect square trinomials

If possible, factor each trinomial as a perfect
square.

a. x2+8x+16 b. 4x2-12x+9

a. X2+ 8x+ 16 Leta?=x?and b? =42, For a perfect

square trinomial, the middle term must
be 2ab.

2ab = 2(x)(4) = 8x,

which equals the given middle term.
Thus a? + 2ab + b% = (a + b)? implies

X%+ 8x + 16 = (X + 4).

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 36



EXAMPLE continued

b. 4x2—-12x+ 9

Let a2 = (2x)? and b? = 32, For a perfect
square trinomial, the middle term must be
2ab.

2ab = 2(2x)(3) = 12x,

which equals the given middle term. Thus
az — 2ab + b? = (a — b)? implies

4x?2 - 12x + 9 = (2x — 3)2.
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SUM AND DIFFERENCE OF TWO
CUBES

For any real numbemsandb,
a3+b3=(a+b)(a?i ab+b? and
a1 b®= (a1 b)(a?+ab+b?)
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EXAMPLE Factoring the sum and difference of
two cubes

Factor each polynomial.
a. nd+27 b. 83— 1y2 5

a. n3+ 27

Because n® = (n)3and 27 =33, we leta=n, b = 3, and

factor.

Substituting a3 + b3 = (a + b)(a? T ab+ b?)

gives N+ 3F=(n+3)MT nA3+3IF
=(n+3)(N*T 3n+9).
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EXAMPLE continued

b. 83— 1y2 5

Here, 8x3 = (2x)3 and 125y3 = (5y)3, so
8x3 - 1y2 5 (2x)°— (5y)°.

Substituting a = 2x and b = 5y in
a1 b3= (a1 b)(a+ab+ bd

gives
(2x)3— (5y)3 = (2XT 5y)(4x? + 10xy + 25/?).
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EXAMPLE Factoring out the GCF before factoring
further

Factor the polynomial completely. 8s® — 32st?

Factor out the common factor of 8s.

8s3 — 32st? = 8s(s? — 412)
= 8s(s — 2t)(s + 2t)
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Practice for section 6.4

« Factoring the difference of two squarf@s.530

« Factoring perfect square trinomi&)s31-52

« Factoring the sum and difference of two cubes
Q5366

« Factoring out the GCF before factoring further
Q 6784
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Introduction to Rational Expressior

B Basic Concepts
B Simplifying Rational Expressions
B Applications
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Basic Concepts

Rational expressionsan be written as guotients
(fractions) of two polynomials.
Examples include:

5 NG 4x* +6X -1
X 3X- 4 4x3- 8

A rational expression can be written as 5 where P and Q are polynomials. A rational
expression is defined whenever QO # 0.

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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EXAMPLE Evaluating rational expressions

If possible, evaluate each expression for the given

vaIu?of the variable. "> 4-w
a. —;x=3 bh. — w=4 C.— W=D
X+3 3Ww- 4 w- 4
da. 1 ;X:3 b. sz w=4 C. 4__\N;W2-5
X+3 3w- 4 w- 4
1 _1 (4)2 :4' ('5)
3+3 6 " 3(a)- 4 (-5)-4
9
_ 16 :—9 =1
12- 4
:1_6 =
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Determining when a rational expression is

Sl undefined

Find all values of the variable for which each

prriessmn IS undeflrl;ed.w2 i 5
X w- 4 - ow-4
a. 1 h. W c. _6
@ w-4 W - 4
Undefined when Undefined when Undefined when
x2 = 0 or when w—-—4=0or w2 —4=0or

X = 0. when w = 4. when w = ° 2,
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EXAMPLE  Simplifying fractions

Simplify each fraction by applying the basic principle
of fractions.

a. 2 . 20 c. B
15 28 135
a. The GCFof9and 15is3. 9 _3@ _3
15 3G 5
| 20 43 5
b. The GCF of 20 and 28 is 4. 8 20 7

45
c.The GCFof45and 135is45. —= =—x ~
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BASIC PRINCIPLE OF RATIONAL EXPRESSIONS

The following property can be used to simplify rational expressions, where P, O, and
R are polynomials.

(@ and R are nonzero.

L
o-rR 0
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EXAMPLE Simplifying rational expressions

Simplify each expressign.

a. 1oy (Sx+12
4y* 4x+16
a. 10y p. 3X+12
4y* 4X+16
Ve _3(x+4)
_4 =3
y 4

X?- 25

C. —
2X° - (X -15

c. X-25
2x° - 7x -15
_ (X-9)(x+3)
~ (2x+3)(x- 5)
_ X+5
2x+3
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EXAMPLE Distributing a negative sign

Simplify each expression.

a. Yy ! h. . 8%
2y+14 X -

a. "y -/ b. 8-X
2y+14 X -
_-Uy+7) _-(8 )
2(y+7) X-8
_ 1 _-8 &
2 X- 8
:LS 4

X_
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Practice for section 7.1

« Evaluating rational expressiorng 11-24
« Determining when a rational expression is undefine
Q 2942

« Simplifying fractionsQ 4350
« Simplifying rational expression® 5566,7184
« Distributing a negative sigQ 6/-70
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Multiplication and Division of Rational
Expressions

B Review of Multiplication and Division of Fractions
B Multiplication of Rational Expressions

B Division of Rational Expressions

PEARSON

—
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EXAMPLE  Multiplying fractions

Multiply and simplify your answers to lowest terms.

a.ﬂ('is b.15('94_ 03(}5
9 7 5 [/ 8
2 i@ 2

9 7 63
p. 1588 2 2. %% 15

o 1 5 5
. 28 52 5145

/7 8 7 7 4 2¢
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EXAMPLE Dividing fractions

Divide and simplify your answers to lowest terms.

a.l.§ b.§.18 cﬂ 1_1
6 5 7 5 15
. 1. 3_1p_»o

6 5 63 18

| 1

b§18:§ ézﬁ_—

7 7 18 748 21
4 11_415 60 _126_12

5 15 5 11 55 116 11
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PRODUCTS OF RATIONAL €EXPRESSIONS

To multiply two rational expressions multiply the numerators and multiply the denom-
inators. That 1s,

s

oo |
hle'
o

where B and D are nonzero.
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EXAMPLE  Multiplying rational expressions

Multiply and simplify to lowest terms. Leave your

answers in factored form.

a. 6XO 52
10 12

GXO 5 6x .5

— 0O

a. > O—
10 12° 10 12

30X
120x°
1

~ 4x

b.

x-36x+4
2x-1 3x -9

X-3 (")X +4
2x-1 3x -9
_ (x-3)(x+4)
(2%~ 1\3x- 9)
_ (x-3)(x+4)

- 3(2x- 1)(x- 3)
X+4

- 3(2x- 1)
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EXAMPLE  Multiplying rational expressions

Multiply and simplify to lowest terms. Leave your

answer in factored form.
X°-16 & 13

X°-9 X -4

X - 16C")X B _ (X - 16)(x+3)
X*-9 X -4  (X*-9)(x- 4)
_ (x- 4)(x+ 4)x+3)
(%= 3)(x+(x- 4)
_ (x+4)(x+3)(x- 4)
(%= 3)(x+3)(x- 4)
_(x+4)
- (x- 3)
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QUOTIENTS OF RATIONAL €EXPRESSIONS

To divide two rational expressions multiply by the reciprocal of the divisor. That is,

where B, C, and D are nonzero.
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EXAMPLE Dividing rational expressions

Divide and simplify to lowest terms.

a. 3 2x+1
X 6X

a.

§_ 2X+1
X 6X

_18x
_x(2x+1)
18
C2x+1

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

b, X-16 x #
X°-2X 8 x 2

b X-16 X+4
X°-2X-8 x+2
_ xX-16 x+2
" X%-2X -8 xX+4
_(x+4)(x 4) x 2
C(x+2)(x 4) X 4
_ (x+4)(x- 4)(x+2)
C(x+2)(x- 4)(x+4)

Slide 59



Practice for section 7.2

« Multiplying fractions Q 9-14
« Dividing fractionsQ 1/-22

« Multiplying rational expressions) 3349
« Dividing rational expressions) 5370
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Addition and Subtraction With Like
Denominators

B Review of Addition and Subtraction of Fracti

B Rational Expressions Having Like
Denominators
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EXAMPLE  Adding fractions having like denominators

Add and simplify to lowest terms.

4 1 1,5
a. —+— b. —+—
77 9 9

a 4. 1 _4+1 _5
77 7 7
b. 1,5 _1+5 _6 _2

9 9 9 9 3
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EXAMPLE Subtracting fractions having like denominators

Subtract and simplify to lowest terms.

13 7 15 11
a. —- — b. —-—
18 18 30 30

“13 7 _13-7 _6 _1
18 18 18 18 3

b. 15 11 15-11 4 2

30 30 30 30 15

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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To add two rational expressions having like
denominators, add their numerators. Keep the
same denominator.

A B A+B
+ = -
C C C C IS nonzero
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EXAMPLE Adding rational expressions having like
denominators

Add and simplify.

4x+1 X -2 b X + S
a. + N
Y+3  x B8 X*+7x 40 X #x 16

4x+1+ X-2 _4x+1+x -2 _5x-1

X+3 X 8 X+3 X+3
b X N ) _ X+5
X°+7x 40 X FXx 18 x°+7x 40
X+5 1

(x+5)(x #)  x+2

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 65



EXAMPLE Adding rational expressions having two
variables

Add and simplify to lowest terms.

7+4 b W2+ y
ab ab wW-y W o-y

7+4 _7+4 _E
ab ab ab ab

W y w+y w+y 1

WV Wy Wy (W (W) w-y

b.
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To subtract two rational expressions having like
denominators, subtract their numerators. Keep th
same denominator.

A B A B
C C C Cis nonzero
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EXAMPLE Subtracting rational expressions having

like denominators

Subtract and simplify to lowest terms.
6 X+6 2X-3 X -4
a. 5" T2 b. 2 4 o2
X X Xx-1 x -

2X-3 X -4 _2X-3 -X 4 _ X+l

-1 x° -1 X°-1 X°-1

X+1 1

(x+1)(x 1) x-1

Copyright © 2009 Pearson Education, Inc. Publishi
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EXAMPLE Subtracting rational expressions having
like denominators

Subtract and simplify to lowest terms. a a2

a+2 a

/a a-2 _TJa-(a-2) _6a+?2
a+2 a a+?2 a+2
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Practice for section 7.3

« Adding fractions having like denominatdgs1520

u Subtracting fractions having like denominators
Q2734

« Adding rational expressions having like
denominators) 25, 39, 41

« Adding rational expressions having two variables
Q 5762

« Subtracting rational expressions having like
denominatorsQ 37, 63
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Addition and Subtraction with Unlike
Denominators

—inding Least Common Multiples

Review of Fractions Having Unlike Denominators

Rational Expressions Having Unlike Denominators

PEARSON

e —
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The least common multiple (LCM) of two or more
polynomials can be found as follows.

Step 1:Factor each polynomial completely.

Step 2:List each factor the greatest number of
times that it occurs in either factorization.

Step 3:Find the product of this list of factors. The
result is the LCM.
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EXAMPLE Finding least common multiples

Find the least common multiple of each pair of
expressions.

a. 6x, 9x4 b. X2+ 7x+ 12, x2+ 8x + 16

a. Step 1 Factor each polynomial completely.
6x=3- A2 x9x*=3- 8 A x A X

Step 2 List each factor the greatest number of times.

3- 3 x- A2 x- A x A x
Step 3 The LCM is 18x*.
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EXAMPLE continued
Find the least common multiple.

b. X2+ 7x+ 12, x2+8x+ 16

Step 1 Factor each polynomial completely.
X2+ 7x+12=(x+3)(x + 4)

X%+ 8X + 16 = (Xx+ 4)(x + 4)

Step 2 List each factor the greatest number of times.
(x +3), (x+4),and (x + 4)

Step 3 The LCM is (X + 3)(x + 4)2.
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EXAMPLE Adding and subtracting fractions having

unlike denominators

Simplify each expression.
plify p £ 11

a. =+ b. —- =
76 12 30

a. The LCD isthe LCM, 42.
4 1 4@ 1 7 24 7 31

767667424242

b. The LCD is 60.
5 11_5 5 112 _25 22_3

12 30 12 5 30 2 60 60 60
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EXAMPLE Adding rational expressions having
unlike denominators

Find each sum and leave your answer in factored
form.

2 5 4 3
a. —+— b. +

X X Xx-1 1 -X
A §+E g é 5 _2X+5
X X X X x2 x2 X°

4,3 _4 .3 -4_4 -3 _1

x-1 1-x x-1 1-x } x-1 x -1 X-1

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 76



EXAMPLE Subtracting rational expressions having
unlike denominators

Simply each expression. Write your answer in lowest
terms and leave it in factored form. X- 3 5

X X+ 7/

The LCD is x(x + 7).

X-3 9 _X-3 X 5

X X+ / X X+7 X +

(x-3)(x #)  5x
X(x+7) X( x )

X—
X

(x- 3)(x #) 5x _X*+4x -21 5x _x*- x 21
X(x+7) X(x+7) X(x+7)
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EXAMPLE Subtracting rational expressions with
unlike denominators

Simplify each expression. Write your answer in lowest

terms and leave it in factored form.
6 5 6 5

X +6X 9 X 9:(x+3)(x B) (x I(x F
The LCD is (x + 3)(X + 3)(X — 3).

6 3y 5 (x8
(x+3)(x 8 (x 3§ (x Fx J-(x 3

_ 6(x- 3) 5(x +3
(x+3)(x B)(x g (x FKx Jx 3
6x- 18 -5x 15 X- 33

(x+3)(x B)(x 3 (x+3)(x B)(x 3
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EXAMPLE Modeling electrical resistance

Add %+—é and then find the reciprocal of the result.

The LCD is RS.
1,1 15 1R
R S RS SR
S R
= +
RS RS

The reciprocal is
_S+R RS
RS S+ R
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Practice for section 7.4

« Finding least common multiple® 1538

« Adding and subtracting fractions having unlike
denominatorsQ 51-58

« Adding rational expressions having unlike
denominatorsQ 5977

« Subtracting rational expressions having unlike
denominatorsQ 6987

« Modeling electrical resistanc® 103

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Slide 80



Radical Expressions and Rational
Exponents

Radical Notation

Rational Exponents

Properties of Rational Exponents

PEARSON

e —
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SQUARE ROOT

The number b is a square root of a if b* = a.
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Every positive numbeat has two square roots, one positive
and one negative. Recall that thasitivesquare root is
called theprincipal square root.

The symbol/ s called theadical sign.
The expression under the radical sign is called the
radicand, and an expression containing a radical sign is

called aradical expression

Examples of radical expressions:

\ﬁ, 6+JX +2, an oX

3X- 4
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EXAMPLE Finding principal square roots

Evaluate each square root.

a. /36 =6

b. v0.64 =0.8

16
25

I
ol s
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EXAMPLE  Approximating a square root

Approximate /38 to the nearest thousandth.

L3820
. 1644148803

=6.164
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cCuBe ROOT

The number b is a cube root of a if b> = a.
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The equation \/a = b means that " = a, where n is a natural number called the index.
If n 1s odd, we are finding an odd root and if » is even, we are finding an even root.

1. Ifa>0,then Vaisa positive number.
2. Ifa<0Oand

a. nis odd, then Va is a negative number.
b. n is even, then \/a is not a real number.
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EXAMPLE  Finding nth roots

Find each root, if possible.

a. 4256 b. 5-243 c. 4-1296

a. 4256 =4 because 404 ® 4 O2¢

b. J-243

c.{-1296 An even root of a negative number is not
a real number.

3 because (-3) =24
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THE EXPRESSION Vx2

For every real number x, Vx2 = | x|.
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EXAMPLE  Simplifying expressions

Write each expression in terms of an absolute value.

a./(- 5 b. \J(x+3)? c. VW - 6w 9

a./(-5° = 4§ 5

b.\J(x+3) =[x 9

C. VWP - 6w 9 =J(w 3? =w 3
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[f » is an integer greater than 1 and « is a real number, then

NOTE: Ifa < 0and n is an even positive integer, then a'

" {s not a real number.
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EXAMPLE Interpreting rational exponents

Write each expression in radical notation. Then

evaluate the expression and round to the nearest
hundredth when appropriate.

a. 49”2 b. 26 c. (6x)”

a. 492 =449 = b. 26¥5 [ 17818645192

C. (6X)1/2 :\/6_7
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If m and n are positive integers with 7 in lowest terms, then

ﬂm';” — ‘\P/a_m — (% )m!+

i

NOTE: Ifa < 0and n is an even integer, then a™" is not a real number.
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EXAMPLE Interpreting rational exponents

Write each expression in radical notation. Evaluate the
expression by hand when possible.

a. 81°* b. 14*°

34  Take the fourth root of 4/5 Take the fifth root of 14
a. 81 b. 14

81 and then cube it. and then fourth it.
= (81" oy
3
— ((‘/ﬁ) _ (Eﬂ)él

Cannot be evaluated
— 97 by hand.
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TECHNOLOGY NOTE: Rational Exponents

When evaluating expressions with rational (fractional) exponents, be sure to put parentheses
around the fraction. For example, most calculators will evaluate 84(2/3) and 8/2/3 differently.
The accompanying figure shows evaluation of 8% input correctly, 8/(2/3), as 4 but shows
evaluation of 8%® input incorrectly, 8/2/3, as %2 = 21.3.

Correct —  (8~(2/3) )
4

Incorrect — 872/3
=] lefefelz e kel
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THE EXPRESSION g Mn

If m and n are positive integers with % in lowest terms, then

1
—mn __
(4] = aml,r", a F 0
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EXAMPLE Interpreting negative rational exponents

Write each expression in radical notation and then
evaluate.

a. 81" b. 6423
a. 81" = 1114 b. 64%°
81
1
_ 1 _642/3
1 _ 1
2
1 (54
3 11
4 16
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Let p and ¢ be rational numbers written in lowest terms. For all real numbers @ and b

for which the expressions are real numbers the following properties hold.

1. a”-a%=a""? Product rule for exponents

1 1
Ly -
2. a’ = i a Negative exponents
a\”? b\ ‘ ) _
3. E_ = | — Negative exponents for quotients
) a
a¥ :
4. — =d"" Quotient rule for exponents
a
5. (aP)?! = g"? Power rule for exponents

6. (ab)? = afb* Power rule for products

a\ a* .
1. | =) =— Power rule for quotients
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EXAMPLE  Applying properties of exponents

Write each expression using rational exponents and
simplify. Write the answer with a positive exponent.
Assume that all variables are positive numbers.

a. Jx G x b. {256
a. Vx@x =xv2 g b.{256x° =(256x° }*
= w24 = 2564 (x® )4

— L34
=X — 4X3/4
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EXAMPLE  Applying properties of exponents-continued
-3

c. V32X 4. ax 0
¢ =; ¢

<

4x RN b.éxe’ (J)Jg_ 827 '8
32" xM° g%_? : —gex_s :
= N 27"
NI ()"
— Oy V20 _ 3
X
= szo
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EXAMPLE  Applying properties of exponents

Write each expression with positive rational exponents

and simplify, if possible.

-1/4

y
a3 [x+2 b. DT

. 4/ /X+2 :((X _Q)yz)lm b, y-1/4 N

=(x )"

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley
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Practice for section 10.1

Finding principal square root® 11-18
Approximating a square roQt 3536

Finding nth rootsQ 2934

Simplifying expressions) 103110
Interpreting rational exponent341-56,6368
Interpreting negative rational exponeQt$ /~62
Applying properties of exponents 91-102

T T T T T T T
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- Simplifying Radical Expressions

B Product Rule for Radical Expressions

B Quotient Rule for Radical Expressions

PEARSON

—
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Consider the following example:

J4@/25 2 501(
J4®@5 F100 H

Let @ and b be real numbers, where % and ‘\%!_;, are both defined. Then

‘\%;- '\%f_:r: \Va + b.

Note: the product rule only works when the radicals
have the same index.
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EXAMPLE Multiplying radical expressions

Multiply each radical expression.

a. 36G/4 =36 & H44 1:

b.3-8 &7 =3 8 20 I =216 ¢

\/4%/ ﬁ‘ﬁ%lc’@ i
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EXAMPLE  Multiplying radical expressions
containing variables

Multiply each radical expression. Assume all variables
are positive.

& ealx = 8 Be %
b.3Ga{102 =3ca tha? 350  aF5C

C.43XC"</7y :4%& 422&1 f/ﬁ
y Ix  \y x { xy
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SIMPLIFYING RADICALS (nth ROOTS)

STEP 1: Determine the largest perfect nth power factor of the radicand.
STEP 2: Use the product rule to factor out and simplify this perfect nth power.
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EXAMPLE  Simplifying radical expressions

Simplify each expression.

a. /500 b. 3[40 c. 72

a.\/500 =100 {5 18/°F
b. 40 =38 & 25
c.\72 =36 2 &2
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EXAMPLE  Simplifying radical expressions

Simplify each expression. Assume that all variables
are positive.

a.\/49x* b. 75y’ c. §3ad§ 922w

aJaox' =49 ' =
b[75y° =/(25') & C. YBad9a?w =33a Giw
:W By :g/(27a3)w

ZSYZ\E :ﬂ/(27a3) P
=3adw
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EXAMPLE  Multiplying radicals with different indexes

Simplify each expression.

a. N78/7 b. YaFa

a.\J7q7 =72 ¥ b. Yala=a" &°

— ~l/3+1/5
— 7]]2+]JB = a
— 75/6 — a.8/15
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Consider the following examples of dividing radical

expressions: \/1 \/:é

Let @ and b be real numbers, where % and % are both defined and » # 0. Then
W _ Va
b /b
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EXAMPLE  Simplifying quotients

Simplify each radical expression. Assume that all

variables are positive.
a. |7 b. ¢ X
2 A

27 32

N)

7 7 X
a. 33— = b. 5 —
\/27 327 32
A7

3

§/x

/32

¥Ux

2
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EXAMPLE  Simplifying quotients
Simplify each radical expression. Assume that all

variables are positive.

a. /90
J10

. V80 _ [60

J1o V1o

Copyright © 2009 Pearson

4

b. VXY

Jy

Jxt

:X2

<
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EXAMPLE  Simplifying radical expressions

Simplify the radical expression. Assume that all
variables are positive.  [32x*
o)

5

y

32xt 32
> v NG

5

<

X4
5

=

:2%
y
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Practice for section 10.2

« Multiplying radical expressions) 11-22

« Multiplying radical expressions containing
variables Q 2362 (not 33, 39,41)

« Simplifying radical expression 7580

« Multiplying radicals with different indexes
Q 101110

« Simplifying quotientsQ 33,39,41

« Simplifying radical expressiorng 9598
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Operations on Radical Expressions

B Addition and Subtraction
B Multiplication

B Rationalizing the Denominator

PEARSON

e —
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Like radicals have the same index and the same radicand.

Like Unlike

32+ 5/2 32+5/3
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EXAMPLE Adding like radicals

If possible, add the expressions and simplify.

a. 4J/7+8/7=12J7

b.73/5+ 235 =935

C. 8++/13 The terms cannot be added because they
are not like radicals.

d. J/6++/16 The expression contains unlike radicals and
cannot be added.
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EXAMPLE Finding like radicals

Write each pair of terms as like radicals, if possible.

a. V80,4125 b. 4316, 7/ 5¢

2. /80=116 6 4 ¢ b,  4Y16= 48 B2
J125=25 5 & =4 B2 &2
7¥/54= 1 27 %2
=7 OYD 282
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EXAMPLE Adding radical expressions

Add the expressions and simplify.

a.\/20+5/5 b. 5J/2++/50 /72

a. \20+5/5 b. 5J2+/50 +/ 72
=m 5¢5 —5J2 +/25 2936 :

=5J2+5/2 +6/ 2
=16y2
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EXAMPLE Subtracting like radicals

Simplify the expressions.

a. 8J7- 2/7 =6J7

b.73/5- 2¥5 ¥/5 =(7 2 W5 =635
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EXAMPLE Subtracting radical expressions

Subtract and simplify. Assume that all variables are
positive.

2\J29¢ - V% > E@

A 29 - b.@- s
:W& \/?\ﬁ( :37y STy
= 72Jx X :04 t
= 6x2+/ X
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EXAMPLE Subtracting radical expressions
Subtract and simplify. Assume that all variables are

positive.
a. 7J2 3/2 b. 334Rb* - 24/ 27b
5 3
72 3/2
A ——- b. 3343"b* - 3 27ab
_W2 3 3/2 ¢ =¥343°° Pab 27 Jab
5 3 3 5
=7a’b¥ ab -3¥ ak
:21fz 15/ 2

=(7a’b -3}/ ab

15 15
_6J2 /2
15 5
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EXAMPLE Multiplying radical expressions
Multiply and simplify.

(3455 )

Solution

N\ N\
(3+Vx)(5 x) =3 ® 3/x 5x Vx~/x

W :15_3\/; 5\/;( ﬁ

=15 #/x X
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EXAMPLE Rationalizing the denominator
Rationalize each denominator. Assume that all

variables are positive.

b
a. 1 b. 7 c. 2
J3 83 b
a.ibﬁ:ﬁ
J3 33
. 1 &3 _N3 _TV3
83 Y3 "8 24
. ab __ab _ ab b:ab\ﬁo:aﬁ
& Vb Tpifb Vb P B2
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Examples of conjugates.

Expression 1+ V2 V3-2 Vx+7 Va- Vb
Conjugate 1 — V2 V3+2 Vx—-7 Va+ Vb
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EXAMPLE Using a conjugate to rationalize the denominator

1

1+4/3

Rationalize the denominator of

1 3
2 2
1 3
2 2
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EXAMPLE Rationalizing the denominator

Rationalize the denominator. 4* 6
3- /6

12+4\ﬁ5 +3,f6 & 63

9- (\V6)
:18+7ﬁ3
3
_18 W6 _ . V6
3 3 3
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EXAMPLE Rationalizing the denominator having a cube root

Rationalize the denominator.

4 4
3/.\,2 2/3
/3

X X
4 1/3
X2

><':
W

4xY3

2/3+1/3
X

43/x

X
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Practice for section 10.3

Adding like radicalsQ 1930

Finding like radicalsQ 918

Adding radical expressiorng 2949
Subtracting like radical® 3340
Subtracting radical expressioQsb5 76
Multiplying radical expression® 7/-88
Rationalizing the denominat¢r 8998

Using a conjugate to rationalize the denominator
Q 99102

Rationalizing the denominata® 103108

Rationalizing the denominator having a cube root
Q 113116
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Complex Numbers

B Basic Concepts
B Addition, Subtraction, and Multiplication
B Powers of

B Complex Conjugates and Division

PEARSON

7,_————-—\‘7
Addison
Wesley
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PROPERTIES OF THE IMAGINARY
UNIT |

i=J 1 and i? =

THE EXPRESSION - a

If a> 0, then'/-a =iva .
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Complex Numbers
a+bi, a and b real

Real Numbers Imaginary Numbers
a+bi, b=0 a+ bi, b#0
Rational Numbers Irrational Numbers Pure Imaginary Numbers
2 1
-3, 5 0,and —3 V3, 7, and V=11 a+bi, a=0b#0
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EXAMPLE  Writing the square root of a negative
number

Write each square root using the imaginary |.

a.\/- 36 b.«/-15 c. \-45

a. \[-36=i/36 =6i
b. v-15 =i/15
c. J-45 =iJ45=i9J5 =35
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Leta + bi andc + di be two complex numbers.
Then

(@+b)+(ctd)=(@a+c)+b+di sum

and
(@+bi)T (c+di)=(@T c)+ (b1 d)i. Difference

Copyright © 2009 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 135



EXAMPLE Adding and subtracting complex
numbers

Write each sum or difference in standard form.

a. (-8 i+ (2+6i) b. 9i — (3 — 2i)

a. (-8 p+@+61)) =(-8 + 5) i1 =E-@2H++ 86

b. 91 —-(83-2i)) =91-3+2i =-3+(9+2)i =-—3+ 11i
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EXAMPLE  Multiplying complex numbers

Write each product in standard form.

a. (6- )@+ 2 b. (6 + 7i)(6 — 7i)

a. (6- D@ +2)
= (6)(2) + (6)(21) — (2)(31) — (31)(2)
=12 + 12i — 6i — 6i°
=12+12i-6i—6(- 1)
=18 + 6i
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EXAMPLE continued

b. (6+7) ( 6i) - 7

= (6)(6) — (6)(71) + (6)(71) — (71)(71)
= 36 — 42i + 42i — 49i?

= 36 — 49i2
=36 - 49(- 1)
= 85
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The value of" can be found by dividing (a

positive integer) by 4. If the remaindernri|s
then

Note that®=1 i1=1i,i2=T1T 1, andi®= Ii.1
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EXAMPLE Calculating powers of i

Evaluate each expression

a. i%® b. i’ c. 44

a. When 25 is divided by 4, the result is 6 with the remainder
of 1. Thus i =it =1.

b. When 7 is divided by 4, the result is 1 with the remainder
of 3. Thus i’ = i3 = —i.

c. When 44 is divided by 4, the result is 11 with the
remainder of 0. Thus i*#=19=1.
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EXAMPLE Dividing complex numbers

Write each quotient in standard form.

3+ 2 h 2
5+i 3

a.

a. 3+2 _(3+2)(54) _3(5- 3i) t2)(9 (§)()
5+i  (5+i)(54)  5(5)- &) i) ()()
15- 3 #0 #° 15+7i 2( ])

25- 5 45 i? ( ])
17+4  _17 7i
26 26 26
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EXAMPLE continued

b.

Copyright © 2009 Pearson Educat
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Practice for section 10.6
Writing the square root of a negative number
Q 1322

Adding and subtracting complex numbers
Q 2330

Multiplying complex numberg) 31-36
Calculating powers af Q 4956
Dividing complex numberg) 71-74
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MTH 209 End of week 2

A You again have the answers to those problems no
assigned

A Practice iIs SOOQO important in this course.

A Work as much as you can with MyMathLab, the
materials in the text, and on my Webpage.

A Do everything you can scrape time up for, first the
hardest topics then the easiest.

A You are building a skill like typing, skiing, playing a
game, solving puzzles.

A NEXT TIME: Nonlinear Equations quadratic
equations, proportion and variation problems



